Yazar "Bindal, Cuma" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Dielectric characterization of BSA doped-PANI interlayered metal-semiconductor structures(Springer, 2019) Karaoglan, Nursel; Tecimer, Habibe Uslu; Altindal, Semsettin; Bindal, CumaThe measured capacitance and conductance-voltage (C & G/omega-V) data between 1 and 200 kHz of Al/(BSA-doped-PANI)/p-InP structure were examined to uncover real and imaginary components of complex permittivity (epsilon* = epsilon ' - j epsilon ''), loss tangent (tan delta), complex electric modulus (M* = M ' + jM ''), and electrical conductivity (sigma). It was uncovered that dielectric constant (epsilon '), dielectric loss (epsilon ''), tan delta, real and imaginary components (M ' and M '') show a big dispersive behavior at low frequencies due to the oriental and the interfacial polarizations, as well as the surface states (N-ss) and the BSA doped-PANI interlayer. Such behavior in epsilon ', epsilon '', and tan delta, behavior with frequency was also explained by Maxwell-Wagner relaxation. The values of sigma are almost constant at lower-intermediate frequencies, but they start increase at high frequencies which are corresponding to the dc and ac conductivity, respectively. The values of M ' and M '' are lower in the low frequency zone and they become increase with increasing frequency at accumulation region due to the short-range charge carriers mobility. Ultimately, dielectric parameters and electric modulus alteration with frequency is the consequence of surface states and relaxation phenomena.Öğe Synthesis and optical characterization of benzene sulfonic acid doped polyaniline(Elsevier - Division Reed Elsevier India Pvt Ltd, 2018) Karaoglan, N.; Bindal, CumaIn this study, Polyaniline emeraldine base (PANI-EB) and benzene sulphonic acid (BSA) doped polyaniline (PANI-BSA), HCl doped Polyaniline (PANI-HCl), and BSA and HCl doped Polyaniline (PANI-HCl-BSA) polymers were synthesized. Synthesizing was accomplished by chemical oxidative polymerization of aniline in acidic environment at room temperature (20 degrees C). Aniline to ammonium peroxydisulfate (APS) ratio is 1:1.25, and aniline to acid ratio is 1:1 for PANI-HCl and 1:0.5:0.5 for PANI-HCl-BSA. PANI-EB was obtained by de-doping PANI-HCl with NH3. In order to determine the type and degree of doping, electrical conductivity, band gap values, physical and structural properties were investigated. Structural properties of the doped and undoped PANI samples were determined using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet visible spectroscopy (UV-vis) and (SEM), and electrical was is determined using four-point probe method. PANI-BSA, PANI-HCl-BSA and PANI-HCl doped polymers conductivity were measured as 1.39, 0.77 and 0.54 S.cm(-1) respectively. Band gap values calculated by Kubelka-Munk equation are 2.35, 2.38, 2.40 eV respectively. The conductivity of the insulating PANI-EB polymer was measured as 2.9.10(-4) S.cm(-1) and its energy band gap was found as 3.06 eV. PANI-BSA, showed higher solubility in dimethylsulphoxide (DMSO) compared to PANI-HCl which is more commonly known. With its high conductivity, high resolution and low band gap, PANI-BSA has proven to be a suitable interface for electronic devices. (C) 2018 Karabuk University. Publishing services by Elsevier B.V.