Yazar "Celik, Mehmet" seçeneğine göre listele
Listeleniyor 1 - 7 / 7
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Analysis of the effect of n-heptane and organic based manganese addition to biodiesel on engine performance and emission characteristics(Elsevier, 2021) Celik, MehmetIn this study, experiments were carried out in two stages. In the first stage, n-heptane (in 4, 8, 12, 16, and 20% volumes) was added to biodiesel (C0) which was produced from refined cottonseed oil via the transesterification method. The optimal n-heptane ratio was determined to be 8% in volume as a result of engine experiments. In CH8 fuel compared to C0 fuel, there was a 7.52% increase in brake power, 7.84% in engine torque, 2.57% in brake thermal efficiency, and 3.08% decrease in brake specific fuel consumption. When n-heptane additive fuels were analyzed, it was observed that the cylinder pressure in CH8 fuel were higher in all loading cases. The minimum ignition delay at full load was 12.88 oCA in CH8 fuel. When the exhaust emission was analyzed, in n-heptane added fuels compared to C0 fuel in CH8 fuels, there was a 29.99% decrease in CO emissions and a 3.16% decrease in THC emissions. In NOX emissions, there was a 1.18% increase in CH8 fuel and a 1.19% increase in smoke emissions. As a result of the analysis of engine performance and the experimental data regarding emission characteristics, the optimal n-heptane additive fuel was determined to be CH8 fuel. In the second phase of the experiment, an organic based manganese addition (4 ppm, 8 ppm, 12ppm, and 16 ppm) was added to 8% n-heptane additive (CH8) fuel. The optimal experiment results were obtained at a ratio of 12 ppm organic based manganese additive. Compared to CH8 fuel, in CH8Mn12 fuel, brake power increased by 3.42%, engine torque by 7.12%, and brake thermal efficiency by 5.35% while brake-specific fuel consumption decreased by 5.91%. In the evaluation of exhaust emissions, in CH8Mn12 fuel compared to CH8 fuel there was an 8.28% decrease in CO emissions, a 5.54% decrease in THC emissions, and a 3.67% decrease in smoke emissions while there was a 10.67% increase in NOX emissions. Depending on its properties, the additive reacted directly with carbon atoms and caused a serious reduction in emissions. (C) 2021 Published by Elsevier Ltd.Öğe Exergy, exergoeconomic, and sustainability analyses of a diesel engine using biodiesel fuel blends containing nanoparticles(Pergamon-Elsevier Science Ltd, 2023) Dogan, Battal; Celik, Mehmet; Bayindirli, Cihan; Erol, DervisThe current paper investigated in detail the influence of titanium dioxide (TiO2) and silver oxide (Ag2O) nanoparticles additives into biodiesel fuel obtained from cottonseed oil in terms of performance and emissions. The fuel blends formed by nanoparticles with biodiesel fuel were evaluated from a different perspective with energy, exergy, and exergoeconomic analyses by utilizing the data from the experiments. Thermal efficiency and exergy efficiency increase when nanoparticles were mixed to the biodiesel fuel. Total exergy losses in fuel blends decrease with the nanoparticle additives. When the engine torque was 40 Nm, the total exergy losses for C100, CAg-75, and CTi-75 test fuels were 14.49 kW, 13.91 kW, and 12.17 kW, respectively. The total exergy loss in D100 fuel was calculated as 12.04 kW under the same conditions. The sustainability indexes for D100 and CTi-75 fuels at an engine torque of 40 Nm were 1.626 and 1.620, respectively. Due to the high price of nanoparticles, test fuels with nanoparticles have a higher cost per unit exergy for engine work than pure biodiesel fuel. Hence, it is essential to decrease the cost of nanoparticle production to expand the using of nanoparticle additives in biodiesel.Öğe Experimental investigation of diesel engine running on diesel fuel supplemented with CeO2 metal nanoparticles(Taylor & Francis Inc, 2023) Celik, Mehmet; Uslu, SametMany factors depend on improving the performance and reducing pollutant emissions caused by fossil fuels in commonly used diesel engines. Nanoparticles have recently become popular in improving combustion performance due to the rapid decrease in fuel reserves and greenhouse gas emissions exceeding critical limits. In this study, a highly oxidizing and reactive additive, cerium dioxide (CeO2) nanoparticle, was added to diesel fuel in four different amounts (25, 50, 75, and 100 ppm). While the nanoparticle additive diminished the brake-specific fuel consumption (BSFC), it developed the brake-thermal efficiency (BTE), in-cylinder pressure (ICP), and heat release rate (HRR). With the accumulation of 100 ppm CeO2, BSFC decreased by 12.08%, while BTE, EGT, ICP, and HRR increased by 13.73%, 21.3%, 3.26%, and 9.52%, respectively, compared to diesel. The ignition delay and combustion time were reduced thanks to increased nanoparticle additive surface area/volume ratio. By the accumulation of 100 ppm CeO2, the ignition delay decreased from 11.52 degrees CA to 11.21 degrees CA, and the combustion time from 82.08 degrees CA to 79.92 degrees CA compared to diesel. Finally, the supplement of CeO2 caused a growth in nitrogen oxide (NOx) emissions while reducing carbon monoxide (CO), hydrocarbon (HC), and smoke emissions. Compared to diesel fuel, with 100 ppm CeO2, NOx emissions increased by 7.56%, and CO, HC, and smoke emissions declined by 13.26%, 15.49%, and 17.65%, respectively. Evaluation of the obtained results reveals the capability of using CeO2 nanoparticles as a fuel additive for diesel fuel.Öğe Investigation of the Effect of CeO2 Nanoparticle Addition in Diesel Fuel on Engine Performance and Emissions(Galenos Publ House, 2022) Arslan, Abdullah Burak; Celik, MehmetIn this study, the effects of the additive on engine performance and emissions were investigated by adding cerium oxide (CeO2)nanoparticles (NPs) into diesel fuel. The use of CeO2 NPs as an additive increased the lower calorific value (LHV) of the fuel while decreasing its viscosity and density. As a result of the experiments, an increase of 8.99% in engine torque was obtained in DCe100 fuel which 100 ppm CeO2 NPs were added compared to diesel (D0) fuel. The increase in the LHV had a positive effect on the specific fuel consumption. The use of CeO2 NPs resulted in an increase in brake thermal efficiency (BTE) due to the increased ending temperature of combustion. A 5.44% increase was obtained in DCe100 fuel compared to D0 fuel in terms of BTE. With an increase in the amount of CeO2, carbon dioxide (CO), hydrocarbon (HC), and smoke emissions were reduced. Compared to D0 fuel, the lowest values were obtained with the DCe100 fuel. CO emissions were reduced by 18.27%, HC emissions by 30.12%, and soot emissions by 21.63%. However, nitrogen oxides (NOX) emissions increased with rising CeO2 amount and in-cylinder temperature. The highest NOX value in DCe100 fuel was obtained with an increase of 6.65% compared to D0 fuel.Öğe Multi-objective optimization of a diesel engine fueled with different fuel types containing additives using grey-based Taguchi approach(Springer Heidelberg, 2022) Celik, Mehmet; Bayindirli, Cihan; Mehregan, MinaDue to the reduction of fossil fuels' resources and their contribution to environmental problems, biodiesel fuels have attracted significant attention as substitutes for diesel fuels. However, since their NOx emissions are higher than that of diesel fuels in most cases and also because of their higher viscosity than diesel, fuel additives are used to enhance their properties and reduce emissions. In this study, the effect of n-hexane and n-hexadecane addition to biodiesel and diesel fuels on exhaust emissions and performance of a single-cylinder diesel engine was investigated by using grey-based Taguchi method. Fuel additive, the additive amount, and fuel type were considered as the operating parameters. Three fuel types including diesel, rapeseed oil biodiesel, and cottonseed oil biodiesel were used in this investigation, while n-hexane and n-hexadecane were considered as the two fuel additives. As well as, three levels were assigned to the additive amount which were 4, 8, and 12%. Based on the operating parameters and their levels, the plan of experiments was generated according to L-18 orthogonal array. Using grey relational analysis, this multi-response optimization problem was first transformed into a single response optimization. Then, this single system response, which is known as grey relational grade, was utilized in Taguchi approach for statistical evaluations. The results demonstrated that rapeseed was the best selection for fuel type compared to cottonseed and diesel in order to have the optimum system responses and hexadecane gave better results for system optimization in comparison with hexane additive. As well as, the analysis of variance showed that fuel type was the predominant operating factor influencing the grey relational grade which means fuel type was the most important parameter in the simultaneous optimization of exhaust emissions and engine performance. The Taguchi results also revealed that the optimum condition of engine performance and exhaust emissions happened when engine was fueled with rapeseed biodiesel containing 12% hexadecane as an additive. The confirmation test result validated the reliability of Taguchi approach in this investigation.Öğe Optimizing the thermophysical properties and combustion performance of biodiesel by graphite and reduced graphene oxide nanoparticle fuel additive(Elsevier - Division Reed Elsevier India Pvt Ltd, 2023) Bayindirli, Cihan; Celik, Mehmet; Zan, RecepIn this study, 50 and 75 ppm reduced graphene oxide and graphite nanoparticle additives were added to cottonseed oil methyl ester which was obtained by the trasterification method. The effects of the related nanoparticle additives on fuel properties such as viscosity, lower heating value, density and cetane num-ber were determined, and their effects on engine performance and exhaust emissions were experimen-tally investigated. The superior properties of reduced graphene oxide such as superior conductivity, high reactivity and large surface area to engine performance and emissions were experimentally investigated and presented the in this paper. The results indicated that, brake thermal efficiency increased in NPs additive added fuels by 6.92 % in CGt-50, 11.89 % in CGt-75, 14.35 % in CGn-50 and 17.97 % in CGn-75 fuels, respectively compared to C0 fuel at full load. Brake specific fuel consumptions decreased by 6.92 %, 11.25 %, 13.36 and 16.28 %, respectively. At 8 Nm load, the cylinder pressures of nanoparticle added fuels increased between 1.91 % and 5.16 % compared to base fuel. It was concluded that the heat release rate increased with the increase of the NPs additive ratio. Between the rate of 2 %-5.09 % reducing were obtained in ID, 0.84 %-5.85 % in CD for CGt-75 and CGn75 fuels according to C0 fuel. Compared to C0 fuel, CO emissions decreased by 9.48 %, 11.85 %, 14.23 % and 14.99 %, consecutively, in CGt-50, CGt-75, CGn-50 and CGn-75 fuels at full load. Thanks to the nanoparticle additive, the thermophysical properties and heat transfer rate of the fuels improved and the fuel mixture was stabilized, leading to an improve-ment of 8.98 %, 11.79 %, 14.04 % and 15.73 % in HC emissions, respectively. The NPs additive increased the cylinder temperature by 10.59 %-17.72 %, which enhanced NOx emissions. It was also observed that smoke emissions were reduced by 8.57 %-18.09 %.(c) 2022 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Öğe Response surface methodology-based optimization of the amount of cerium dioxide (CeO2) to increase the performance and reduce emissions of a diesel engine fueled by cerium dioxide/diesel blends(Pergamon-Elsevier Science Ltd, 2023) Uslu, Samet; Celik, MehmetThe supplement of metal nanoparticles to diesel fuel in specific amounts has been included as an innovative approach to the studies on reducing pollutant emissions of compression ignition engines. In present research, the impacts of adding cerium dioxide (CeO2) nanoparticles, which is a highly oxidizing and reactive additive, to diesel fuel in different amounts (25, 50, 75, and 100 ppm) were experimentally investigated at different engine loads (8, 12, 16, 20, and 25 Nm) and optimized using the response surface methodology (RSM). According to the experimental results, the supplement of CeO2 decreased the brake-specific fuel consumption (BSFC) and enhanced the brake-thermal efficiency (BTHE) and exhaust gas temperature (EGT). On the other hand, the addition of CeO2 caused a decrease in hydrocarbon (HC), carbon monoxide (CO), and smoke emissions, and on the contrary, an increase in nitrogen oxide (NOx) emissions. Under the RSM findings, determined the optimal CeO2 quantity and engine load as 100 ppm and 12 Nm, respectively. Optimum responses corresponding to optimal CeO2 and engine load were determined as 23.125%, 429.766 g/kWh, 335.143 degrees C, 0.257%, 130.898 ppm, 786.309 ppm, and 25.654% for BTHE, BSFC, EGT, CO, HC, NOx, and smoke, respectively. Optimal results were obtained with a high desirability value of 0.7115. A good agreement between the experimental and RSM-predicted response values indicates that the developed RSM design was successful.