Yazar "Demir, Teyfik" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe The effects of pre-stressed rods contoured by different bending techniques on posterior instrumentation of L4-L5 lumbar spine segment: A finite element study(Sage Publications Ltd, 2022) Sengul, Emre; Ozmen, Ramazan; Demir, TeyfikPosterior pedicle screw instrumentation (PPSI) is a well-known method in lumbar spine surgery. Understanding how PPSI affects the biomechanics of the lumbar spine is an important issue. In particular, during PPSI operations, surgeons bend rods according to the patients' spinal curvatures based on their own experiences. As a result, residual stresses develop on the rods due to this bending. Although many finite element-based biomechanical studies have been performed for PPSI, studies comparing the effects of residual stresses arising from rod contouring on the construct stresses are lacking. Thus, this study aimed to investigate the effects of residual stress in PPSI using rods contoured with a French bender and an in-situ bender, as well as comparing the differences in stress increment with straight and contoured rods for different physiological motions. Accordingly, a finite element (FE) model of the L4-L5 lumbar spine segment was developed for PPSI and the effects of residual stresses on rods were investigated by using different bending methods. In the simulations, it was found that rods contoured with a French bender with residual stress resulted in significantly more increased stress in PPSI compared to those contoured with an in-situ bender. The results of this study emphasize that increased stress in PPSI due to the residual stresses for different physiological motions may increase the risk of PPSI failures. Additionally, the finite element modeling approach employed here could be used as a fundamental tool for further investigations of topics such as PPSI fatigue life and failure studies.Öğe Synthesis and sintering of B, Sr, Mg multi-doped hydroxyapatites: Structural, mechanical and biological characterization(Elsevier, 2021) Yedekci, Busra; Tezcaner, Aysen; Alshemary, Ammar Z.; Yilmaz, Bengi; Demir, Teyfik; Evis, ZaferHydroxyapatite (HA, Ca-10(PO4)(6)(OH)(2)) is the main constituent mineral of bone and teeth in mammals. Due to its outstanding biocompatibility and osteoconductive capabilities, it is preferred for bone repair and replacement. Owing to high potential to have excellent biological properties, ternary ions-doped HAs have just begun to be investigated in the biomedical field and preparing multi-doped HAs is a fairly new approach. Boron (B, BO33-), strontium (Sr, Sr2+) and magnesium (Mg, Mg2+) provide a beneficial effect on bone growth, bone strength, biocompatibility and positively affect bone microstructure. The motivation of this study is taking advantages of the potential of the combine effects of these bivalent ions. In this study, 8 different compositions of BO33- , Sr2+, Mg2+ multi-doped HAs were synthesized by microwave irradiation method to investigate the structural, mechanical and biological features of bone substitutes. This is the first time we report the effect of boron, strontium and magnesium ions multi-doping on the structure of HA and its biological properties. Samples were sintered at 700, 900 and 1100 degrees C. The effect of varying ion contents and sintering temperature on structural and biological properties of the multi-doped samples was investigated. B, Sr and Mg ions were successfully doped into the HA structure according to X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) analyses. A biphasic structure was obtained with increasing amount of ion-doping. Increasing the sintering temperature affected the crystallinity and the density of the samples gradually. Vicker's microhardness and diametral strength of the samples increased at high sintering temperatures. B-Sr-Mg multi-doped HA promoted osteoblast-like Saos-2 cell proliferation, and as the sintering temperatures of the samples increased, the osteogenic differentiation level of the cultured cells also increased. Overall, results showed that the biological properties of HA were improved with the doping of Sr, Mg and B ions, and for bone implant applications samples sintered at 1100 degrees C were suggested to have potential as a biomaterial.