Yazar "Duman, Sibel" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Eco-friendly dehydrogenation of dimethylamine- borane catalyzed by core-shell-looking tri-metallic RuNiPd nanoclusters loaded on white-lowering horse-chestnut seed(Pergamon-Elsevier Science Ltd, 2022) Ulutas, Kadir; Alshawesh, Mansour; Duman, SibelGenerally, white-flowering horse-chestnut seed (WFHC) found in roadsides, parks and gardens, which spills around and causes environmental pollution, is defined as waste-bio material. This study is quite remarkable as it gives WFHC a new field of usage and literally prioritizes the environment. Here, waste-bio WFHC was tested as supporter for tri-metallic RuNiPd nanoclusters in the eco-friendly dehydrogenation of dimethylamine-borane (DMAB). Core-shell-looking tri-metallic RuNiPd@WFHC, with 264.09 +/- 45.55 nm particle size, were in-situ synthesized throughout dehydrogenation of DMAB at 35.0 +/- 0.1 degrees C. The WFHC and tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs were characterized by advanced analysis and their surface morphologies were studied in detail using adsorption models. The N2 adsorption-desorption and logarithmic-Freundlich plots indicated that surface morphologies have heterogeneous multi-layer and typical Type-III isotherm with meso-porous surfaces. Also, detailed kinetic studies were actualized on the dehydrogenation of DMAB catalyzed by tri-metallic Ru2.00Ni1.86Pd1.00@WFHC NCs with 158 h-1 TOF value.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe The effect of air quality parameters on new COVID-19 cases between two different climatic and geographical regions in Turkey(Springer Wien, 2023) Ulutas, Kadir; Abujayyab, Sohaib K. M.; Abu Amr, Salem S. S.; Alkarkhi, Abbas F. M.; Duman, SibelDifferent health management strategies may need to be implemented in different regions to cope with diseases. The current work aims to evaluate the relationship between air quality parameters and the number of new COVID-19 cases in two different geographical locations, namely Western Anatolia and Western Black Sea in Turkey. Principal component analysis (PCA) and regression model were utilized to describe the effect of environmental parameters (air quality and meteorological parameters) on the number of new COVID-19 cases. A big difference in the mean values for all air quality parameters has appeared between the two areas. Two regression models were developed and showed a significant relationship between the number of new cases and the selected environmental parameters. The results showed that wind speed, SO2, CO, NOX, and O-3 are not influential variable and does not affect the number of new cases of COVID-19 in the Western Black Sea area, while only wind speed, SO2, CO, NOX, and O-3 are influential parameters on the number of new cases in Western Anatolia. Although the environmental parameters behave differently in each region, these results revealed that the relationship between the air quality parameters and the number of new cases is significant.