Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Emircan, E." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Wildfire Detection from Sentinel Imagery Using Convolutional Neural Network (CNN)
    (Springer Science and Business Media Deutschland GmbH, 2024) Abujayyab, S.K.M.; Karas, I.R.; Hashempour, J.; Emircan, E.; Orçun, K.; Ahmet, G.
    Wildfires are a significant threat to the environment and human life, and early detection is crucial for effective wildfire management. The aim of this research work is to develop a deep learning model using CNN method for detecting wildfire using satellite imagery. The CNN model development process involves splitting the dataset into training and testing sets, pre-processing the data using ImageDataGenerator function, building a deep learning model using Sequential function, compiling the model using Adam optimizer, categorical cross-entropy loss function, and accuracy metric, and training the model using the fit generator function. The CNN model architecture includes Conv2D, MaxPooling2D, and Dense layers. The dataset was collected from Sentinel-2 L1C, including 159 fire images and 149 non-fire images from different places in the Mediterranean region of Turkey. The CNN model was developed using the Keras library and trained for 200 epochs using the Adam optimizer. The model achieved an accuracy of 92.5% and a loss of 0.22 on the test set, outperforming existing methods for wildfire detection. The research work contributes to the field of wildfire science and management by providing a deep learning CNN detection model that can accurately predict wildfire behavior using satellite imagery. The outcomes of the research work can enable more effective and efficient wildfire mitigation efforts, improving the safety and well-being of communities affected by wildfires. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

| Karabük Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kastamonu Yolu Demir Çelik Kampüsü, 78050 - Kılavuzlar, Karabük, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim