Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Faniar, A.A." seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Detection of Faulty Solar Panels Using Artificial Intelligence and Machine Learning Methods
    (Institute of Electrical and Electronics Engineers Inc., 2023) Faniar, A.A.; Seker, C.
    One of the most promising approaches for detecting faults in solar panels is using computer vision techniques based on deep learning algorithms. Deep learning has proven to be highly effective in image classification tasks, and several studies have demonstrated its potential for detecting faults in solar panels. This paper, proposes a method for the classification of faulty solar panels using Convolutional Neural Networks (CNNs). CNN based on the encoder method is used for extracting features from the faulty and non-faulty images which received from the PV solar systems. Four classes that have 0%, 33%, 66%, and 100% defective rates have been considered to train the machine learning method. The Decision Tree, Support Vector Machine (SVM), KNN, Ensemble, and Discriminant methods were used for the machine learning and the accuracy for these methods has been obtained as 94.88%, 76.20%, 97.45%, 98.34%, and 80.23%, respectively. © 2023 IEEE.

| Karabük Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kastamonu Yolu Demir Çelik Kampüsü, 78050 - Kılavuzlar, Karabük, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim