Yazar "Ghawbar, Fayad" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Cost and Efficiency Analysis of Steganography in the IEEE 802.11ah IoT Protocol(Tech Science Press, 2022) Almohammedi, Akram A.; Shepelev, Vladimir; Darshi, Sam; Balfaqih, Mohammed; Ghawbar, FayadThe widespread use of the Internet of Things (IoT) applications has enormously increased the danger level of data leakage and theft in IoT as data transmission occurs through a public channel. As a result, the security of the IoT has become a serious challenge in the field of information security. Steganography on the network is a critical tool for preventing the leakage of private information and enabling secure and encrypted communication. The primary purpose of steganography is to conceal sensitive information in any form of media such as audio, video, text, or photos, and securely transfer it through wireless networks. In this paper, we analyse the performance characteristics of one of the steganography techniques called Hidden Communication System for Corrupted Networks (HCCNETs) for hiding sensitive data. This performance analysis includes the efficiency and the cost of the system in Wireless Local Area Networks (WLANs), specifically in the IEEE 802.11ah IoT protocol. The analysis is mainly based on a two-dimensional Markov chain model in the presence of an error channel. Additionally, the model considers packet arrival rate, back-off timer freezing, back-off stages, and short retry limit to ensure compliance with IEEE 802.11ah requirements. It stresses the importance of taking these elements into consideration while modeling the efficiency and cost of the steganographic channel system. These parameters often result in a high precise channel access estimation, a more accurate and efficient accuracy measurements system, efficient channel utilisation, avoidance of throughput saturation overestimation, and ensuring that no packet is served endlessly. Evaluated results demonstrate that HCCNETs is an effective approach at low cost.Öğe High Isolated 10-MIMO Antenna Elements for 5G Mobile Applications(Univ Tun Hussein Onn Malaysia, 2023) Ghawbar, Fayad; Jumadi, A. S.; Majid, H. A.; Ghafar, Aimi S. A.; Saparudin, Faiz A.; Esmail, B. A. F.; A.Almohammedi, AkramThe enormous increase in gadgets has resulted in a data rate shortage insufficient to satisfy the user's needs. The multiple input multiple output (MIMO) technique is substantially deployed in the 5G wireless communication system to increase channel capacity and provide sufficient throughput. However, MIMO antennas are associated with mutual coupling, especially between closely spaced antenna elements, resulting in a low MIMO performance. Therefore, effective isolation techniques are essential to reduce the mutual coupling between the adjacent MIMO antenna elements. A hybrid decoupling technique of self-isolation and an orthogonal mode approach has been proposed to provide significant isolation for high MIMO order 5G mobile applications. A compact self -isolated 10 x 10 MIMO antenna system has been proposed for 5G mobile phone applications operating at the 3.5 GHz frequency band. The antennas act as radiating and isolating elements simultaneously, providing significant isolation. Furthermore, the self-isolated 10-MIMO antenna elements are printed on double side edges of FR-4 small substrates orthogonal to the system substrates, forming an orthogonal mode that enhances the self-decoupling approach. The s-parameters results indicate significant isolation of less than-19 dB between the adjacent 10-MIMO antenna elements. Likewise, the evaluation results of the MIMO performance metrics such as envelope correlation coefficient (ECC), diversity gain (DG), total active reflection coefficient (TARC), and channel capacity Loss (CCL), are less than 0.006, 9.97 dB,-10 dB, and 0.08 bits/s/Hz respectively. The isolation result and the evaluated MIMO performance metrics demonstrate that the proposed 10-MIMO antenna system is sufficient for 5G mobile applications.