Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Gurel, A.E." seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Estimation of global solar radiation on horizontal surface using meteorological data
    (2012) Gurel, A.E.; Ergun, A.
    In the present study, the methods of Artificial Neural Networks (ANN) and Regression Analysis were used in estimating monthly average daily global solar radiation arriving on horizontal surface in Rize with the help of meteorological and geographic data like monthly average daily extraterrestrial radiation, monthly average daily hours of bright sunshine, day length, relative humidity, wind speed, temperature and declination angle. Mean bias error (MBE), root mean square error (RMSE) and t-statistic methods were used to evaluate performance of the estimation. It was seen at the end of the study that the equation obtained through multi-regression analysis method yielded better performance than that of obtained through ANN method. © Sila Science.
  • Küçük Resim Yok
    Öğe
    The prediction of photovoltaic module temperature with artificial neural networks
    (Elsevier Ltd, 2014) Ceylan, I.; Erkaymaz, O.; Gedik, E.; Gurel, A.E.
    In this study, photovoltaic module temperature has been predicted according to outlet air temperature and solar radiation. For this investigation, photovoltaic module temperatures have been determined in the experimental system for 10, 20, 30, and 40 °C ambient air temperature and different solar radiations. This experimental study was made in open air and solar radiation was measured and then this measured data was used for the training of ANN. Photovoltaic module temperatures have been predicted according to solar radiation and outside air temperature for the Aegean region in Turkey. Electrical efficiency and power was also calculated depending on the predicted module temperature. Kutahya, U§ak and Afyon are the most suitable cities in terms of electrical efficiency and power product in the Aegean region in Turkey.

| Karabük Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kastamonu Yolu Demir Çelik Kampüsü, 78050 - Kılavuzlar, Karabük, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim