Yazar "Hakdagli, Ozlem" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fast Text Classification with Naive Bayes Method on Apache Spark(Ieee, 2017) Ogul, Iskender Ulgen; Ozcan, Caner; Hakdagli, OzlemThe increase in the number of devices and users online with the transition of Internet of Things (IoT), increases the amount of large data exponentially. Classification of ascending data, deletion of irrelevant data, and meaning extraction have reached vital importance in today's standards. Analysis can be done in various variations such as Classification of text on text data, analysis of spam, personality analysis. In this study, fast text classification was performed with machine learning on Apache Spark using the Naive Bayes method. Spark architecture uses a distributed in-memory data collection instead of a distributed data structure presented in Hadoop architecture to provide fast storage and analysis of data. Analyzes were made on the interpretation data of the Reddit which is open source social news site by using the Naive Bayes method. The results are presented in tables and graphsÖğe KEYWORD EXTRACTION BASED ON WORD SYNONYMS USING WORD2VEC(Ieee, 2019) Ogul, Iskender Ulgen; Ozcan, Caner; Hakdagli, OzlemNowadays, the data revealed by the online individuals are increasing exponentially. The raw information that increasing data holds, transformed into meaningful outputs using machine learning and deep learning methods. Generally, supervised learning methods are used for information extraction and classification. Supervised learning is based on the training set that classification algorithms are trained. In the proposed approach, keyword extraction solution is proposed to classify text data more convenient. The developed solution is based on the Word2Vec algorithm, which works by taking into consideration the semantic meaning of the words unlike general approaches that based on word frequency. A new approach, word embedding algorithm named Word2Vec, works by calculating the word weights, semantic relationship, and the final weights of vectors. The obtained keywords are trained with Name Bayes and Decision Trees methods and the performance of the proposed method is shown by classification example.Öğe STREAM TEXT DATA ANALYSIS ON TWITTER USING APACHE SPARK STREAMING(Ieee, 2018) Hakdagli, Ozlem; Ozcan, Caner; Ogul, Iskender UlgenWith today's developing technology, people's access to information and its production have reached a very fast level. These generated and obtained information are instantly created, entered into data systems and updated. Sources of streaming data can be transformed into valuable analysis results when they are handled with targeted methods. In this study, a text data field is determined to perform analysis on instantaneous generated data and Twitter, the richest platform for instant text data, is used. Twitter instantly generates a variety of data in large quantities and it presents it as open source using an API. A machine learning framework Apache Spark's stream analysis environment is used to analyze these resources. Situation analysis was performed using Support Vector Machine, Decision Trees and Logistic Regression algorithms presented under this environment. The results are presented in tables.