Yazar "Hidiroglu, M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An investigation into the joining of titanium with copper through diffusion welding/bonding(2013) Aydin, K.; Hidiroglu, M.; Kaya, Y.; Kahraman, N.In this study, Ti-6Al-4V and copper were joined through different welding temperatures (825 and 850 °C) and holding time (15, 30 and 60 min) diffusion welding/bonding method under argon shielding. The welded joints were subjected to hardness and shearing tests in order to determine their interfacial strength. In addition, microstructural properties of the joined interface were examined using optical and scanning electron microscope (SEM). EDS graphs and diffusion maps of the interface were obtained by carrying out line and elemental analyses. The shearing tests revealed that increasing welding temperature and holding time increased the shearing strength of joined parts. The hardness tests indicated that hardness values increased with increasing distance from titanium to the interface and decreased with increasing distance from the interface to the copper. EDS analyses showed that different reaction areas took place in the welded parts depending on the temperature and holding time.Öğe MICROSTRUCTURE AND MECHANICAL PROPERTIES OF DISSIMILAR RESISTANCE SPOT WELDED ZN-COATED DP800-TBF1180 AUTOMOTIVE STEELS USING MFDC TECHNOLOGY(Polska Akad Nauk, Polish Acad Sciences, Inst Metall & Mater Sci Pas, 2024) Hidiroglu, M.; Baser, T. A.; Kahraman, N.The use of advanced high-strength steel in the automotive industry is increasing in last decade. This is due to the restrictions to reduce fuel consumption and thereby decrease harmful carbon dioxide emissions. This paper aims to investigate welding properties of dissimilar resistance spot welded hot dip galvanized DP800-TBF1180 automotive steels using MFDC (Mid Frequency Direct Current) technology. LME crack occurrence due to the zinc coating was determined by magnetic particle test. The mechanical properties of welded joints were determined by tensile-shear, cross-tension and hardness measurements. The micro structural characterization was also performed in the weld zones of the joints. The appropriate welding parameter range were selected for welding processes by MFDC technology. Therefore, LME crack formation were not observed according to magnetic particle test. The highest strength was obtained as 17.60 kN and 5.51 kN by tensile-shear and cross tension tests, respectively with a welding current of 8 kA. In addition, a soft zone was found in the HAZ for both base metals. The hardness decrease in HAZ is more pronounced on the TBF1180 side. The soft zone hardness values of the sample S4 were approximately 330 HV, and the hardness values of the base material were measured in the range of 376-386 HV.