Yazar "Imbayah, I." seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comprehensive State-of-the-Art of Vehicle-To-Grid Technology(Institute of Electrical and Electronics Engineers Inc., 2023) Alsharif, A.; Ahmed, A.A.; Khaleel, M.M.; Daw, Alarga, A.S.; Jomah, O.S.M.; Imbayah, I.A vehicle is a means of transportation, such as a car, truck, or train, that is capable of moving people or goods from one place to another. Vehicles can be classified based on various factors, such as the type of fuel they use (e.g. gasoline, diesel, electricity), the number of wheels they have (e.g. two, four, six), and their intended use (e.g. passenger transportation). Vehicles may have connectors, such as plug sockets or fuel ports, that allow them to be connected to other devices or systems to form Vehicle-to-Everything (V2X) technology. For example, an Electric Vehicle (EV) may have a charging port that allows it to be connected to an electric power source to recharge its batteries such Vehicle-to-Grid (V2G) as one of the V2X forms. One of the challenges in charging EVs is the availability of charging infrastructure. In many places, there are relatively few public charging stations, which can make it difficult for EV owners to find a place to charge their vehicles when they are away from home. Additionally, charging an electric vehicle can take significantly longer time than filling up a gasoline-powered vehicle, which can be inconvenient for some drivers. In this review, the various topologies of V2X, connectors, charging challenges, and EV impact types on the grid are conducted. © 2023 IEEE.Öğe Review paper on Green Hydrogen Production, Storage, and Utilization Techniques in Libya(Libyan Center for Solar Energy Research and Studies, 2024) Imbayah, I.; Hasan, M.; El-Khozondare, H.; Khaleel, M.; Alsharif, A.; Ahmed, A.A.the world is currently facing energy-related challenges due to the cost and pollution of non-renewable energy sources and the increasing power demand from renewable energy sources. Green hydrogen is a promising solution in Libya for converting renewable energy into usable fuel. This paper covers the types of hydrogen, its features, preparation methods, and uses. Green hydrogen production is still limited in the world due to safety requirements because hydrogen has a relatively low ignition temperature and an extensive ignition range and is considered a hazardous element, the lack of infrastructure in Libya, as well as the high cost of production currently. However, the production costs of one megawatt of green hydrogen and fossil fuels are insignificant. This suggests that electricity production from green hydrogen could become an economic competitor to fossil fuels in Libya. This is due to the cost of adding renewable energy to the public electricity grid. Also, the production of gray hydrogen is possible in Libya because of oil through the installation of systems for converting methane gas and capturing carbon dioxide gas. © 2024, Libyan Center for Solar Energy Research and Studies. All rights reserved.Öğe A simple Design of Automatic Bag Valve Mask Ventilator using arduino(Institute of Electrical and Electronics Engineers Inc., 2023) Alarga, A.S.D.; Hawedi, H.S.; Imbayah, I.; Ahmed, A.A.; Alsharif, A.; Khaleel, M.M.This paper presents a ventilator that is characterized by simple construction and operation, as well as accurate execution of tasks due to the control system based on the Arduino board and servo motor. The device presented in this research is composed of two main parts: the mechanical part, represented by pliers, which are two opposite plates that can be moved at a specific angle and speed with the assistance of a servo motor connected to these two pliers by two iron rods, and the electronic part, which serves as the base for the ventilator described in this paper. The electronic component consists of a keypad, an Arduino board, and a servo motor. a display screen that shows the user-entered settings is also included. The main goal of this paper is to accurately adjust the amount of oxygen flowing to the patient through the ability of this device to determine the angle of the motor, and the number of breathing times that can be adjusted by adjusting the speed of the engine. A model of the proposed ventilator has been implemented and successfully tested in terms of modifying the motor angle and how rapidly the bag is pressed (motor speed). wherever the control system's settings have all been accurately and completely applied. In comparison to other devices proposed in numerous studies, this device is characterized by the simplicity of its design, the affordability of its parts, as well as its light weight, which makes it easier to carry and move from one place to another. It is also distinguished by its accuracy in controlling the amount of oxygen required as well as the number of breathing cycles per minute. © 2023 IEEE.