Yazar "Karali, M." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Effect of Aging Treatment on Surface Roughness, Mechanical Properties, and Fracture Behavior of 6XXX and 7XXX Aluminum Alloys(Springer, 2014) Sevim, I.; Sahin, S.; Cug, H.; Cevik, E.; Hayat, F.; Karali, M.The effect of aging treatment on the surface roughness and mechanical properties of AA6061 and AA7075 alloys was studied. Microhardness and tensile tests were used to investigae the mechanical properties. X-ray diffraction analysis was used to investigate the surface of the specimens. Furthermore, after tensile tests fractured surfaces were examined with scanning electron microscopy. An atomic force microscope was employed for analysis of the effect of aging treatment on surface roughness. Higher surface roughness with an increase in the volume fraction of the precipitate was revealed.Öğe Examination of the strength and ductility of AA-1050 material shaped with the multi-stage deep drawing method(2011) Karali, M.Deep drawing materials are easily shapeable materials, because of their high ductility. Aluminum alloy materials are classified in the deep drawing materials group because they are easily shapeable. In order to increase the strength, materials are made an alloy by adding some chemical additives. They are also provided strength increasing by tempering. Normally, materials harden when reshaped under plastic deformation. Reshape the shaped materials harden while reducing its ductility. In this study, changes in mechanical properties immediately after the AA-1050 (T0) sheet material is shaped by the multi-stage deep drawing method and after storage were investigated. It was calculated that a 4-stage shaping is needed for a tube production at selected sizes. Deep drawing treatments are made in sizes of these stages. Samples were collected from each cold-shaped intermediary form. Mechanical properties of this materials are determined by applying tensile test. Some basic parameters, like tensile stresses, max. uniform strain rates, strain hardenings and strength coefficients, are investigated and compared. Obtained data were explained using graphs. It was observed that tensile strength increased and strain quantities were reduced at every stage. It is also seen an increase in strain hardening index.