Yazar "Kilic, M." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Dry Sliding Wear Behaviour and Microstructure of the W-Ni-Fe and W-Ni-Cu Heavy Alloys Produced by Powder Metallurgy Technique(Springer, 2016) Kilic, M.; Ozyurek, D.; Tuncay, T.The effects of Fe and Cu on the wear behaviour of W-Ni alloys is investigated. W-Ni-Fe and W-Ni-Cu alloys are produced with six different compositions by the powder metallurgy technique. The microstructure is examined after shaping and sintering. Electron microscopy (SEM+EDS) and X-ray diffraction (XRD) are used to characterize the density, hardness, and grain size of W-Ni-Fe and W-Ni-Cu alloys produced by powder metallurgy technique. A pin-on-disc apparatus is used for the wear tests. All of the samples are tested under loads of 20 and 30 N, at a rate of 1 m/s and for five different sliding distances. It is found that, in Fe and Cu alloys, an increase in the W amount results in an increase in density and hardness. Furthermore, an increase in the W amount leads to a decrease in the amount of the binding phase for W-Ni-Fe and W-Ni-Cu alloys with a W content of 90, 93, and 97%, and resultes in reduced weight loss for W-Ni-Fe alloys.Öğe The effect of selenium supplementation on elements distribution in liver of rats subject to strenuous swimming(Comenius Univ, 2013) Sivrikaya, A.; Akil, M.; Bicer, M.; Kilic, M.; Baltaci, A. K.; Mogulkoc, R.The present study aims to explore how selenium supplementation affects the element distribution in the liver tissue of rats subjected to strenuous swimming exercise. Thirty-two Spraque-Dawley male rats were equally divided into the four groups: Group 1, normal control group. Group 2, selenium-supplemented, non-swimming (0.6 mg/kg/day sodium selenite) group. Group 3, swimming, no supplementation group. Group 4, swimming, selenium-supplemented (0.6 mg/kg/day sodium selenite) group. After one month, the animals were decapitated and liver tissue samples were collected to determine the levels of lead, cobalt, boron, molybdenum, chromium, sulfur, magnesium, sodium, potassium, phosphorus, copper, iron, zinc and selenium. The chromium, molybdenum, iron, sodium and potassium values were higher in the swimming groups, relative to controls. Group 3 had significantly lower lead levels (p<0.001). The highest cobalt levels were obtained in the Group 1 and that of the Group 2 was higher than in the Groups 3 and 4. The boron values in the Group 3 were higher than those in all other groups. The copper and magnesium levels were higher in the Groups 3 and 4, compared to the Groups 1 and 2. The highest phosphorus levels were found in the Group 1. The highest selenium and zinc values were obtained in the Group 2 and those of the Group 4 were higher than in the Groups 1 and 3. Group 1 had higher selenium and zinc levels than the Group 3. The results of the present study demonstrated that selenium-supplemented rats subjected to strenuous swimming exercise had distinct elements distribution in liver tissue. Also, selenium supplementation offsets the decrease in zinc levels in rats subjected to vigorous swimming (Tab. 3, Ref. 20). Full Text in PDF www.elis.sk.Öğe The effect of selenium supplementation on elements distribution in liver of rats subject to strenuous swimming(2013) Sivrikaya, A.; Akil, M.; Bicer, M.; Kilic, M.; Baltaci, A.K.; Mogulkoc, R.The present study aims to explore how selenium supplementation affects the element distribution in the liver tissue of rats subjected to strenuous swimming exercise. Thirty-two Spraque-Dawley male rats were equally divided into the four groups: Group 1, normal control group. Group 2, selenium-supplemented, non-swimming (0.6 mg/kg/day sodium selenite) group. Group 3, swimming, no supplementation group. Group 4, swimming, selenium-supplemented (0.6 mg/kg/day sodium selenite) group. After one month, the animals were decapitated and liver tissue samples were collected to determine the levels of lead, cobalt, boron, molybdenum, chromium, sulfur, magnesium, sodium, potassium, phosphorus, copper, iron, zinc and selenium. The chromium, molybdenum, iron, sodium and potassium values were higher in the swimming groups, relative to controls. Group 3 had significantly lower lead levels (p<0.001). The highest cobalt levels were obtained in the Group 1 and that of the Group 2 was higher than in the Groups 3 and 4. The boron values in the Group 3 were higher than those in all other groups. The copper and magnesium levels were higher in the Groups 3 and 4, compared to the Groups 1 and 2. The highest phosphorus levels were found in the Group 1. The highest selenium and zinc values were obtained in the Group 2 and those of the Group 4 were higher than in the Groups 1 and 3. Group 1 had higher selenium and zinc levels than the Group 3. The results of the present study demonstrated that selenium-supplemented rats subjected to strenuous swimming exercise had distinct elements distribution in liver tissue. Also, selenium supplementation offsets the decrease in zinc levels in rats subjected to vigorous swimming (Tab. 3, Ref. 20). Full Text in PDF www.elis.sk.Öğe Interactive effects of melatonin, exercise and diabetes on liver glycogen levels(2011) Bicer, M.; Akil, M.; Avunduk, M.C.; Kilic, M.; Mogulkoc, R.; Baltaci, A.K.Background: This study aimed to examine the effects of melatonin supplementation on liver glycogen levels in rats with streptozotocin-induced diabetes and subjected to acute swimming exercise. Material and methods: Eighty Sprague-Dawley type adult male rats were divided into eight groups: Group 1, general control; Group 2, melatonin-supplemented control; Group 3, melatonin-supplemented diabetes; Group 4, swimming control; Group 5, melatonin-supplemented swimming; Group 6, melatonin-supplemented diabetic swimming; Group 7, diabetic swimming; Group 8, diabetic control. Melatonin was supplemented at a dose of 3 mg/kg/day intraperitoneally for four weeks. Liver tissue samples were collected and evaluated using a Nikon Eclipse E400 light microscope. All images obtained from the light microscope were transferred to PC medium and evaluated using Clemex PE 3.5 image analysis software. Results: The lowest liver glycogen levels in the study were found in group 4. Liver glycogen levels in groups 3, 6, 7 and 8 (the diabetic groups) were higher than group 4, but lower than those in groups 1 and 2. The lowest liver glycogen levels were obtained in groups 1 and 2. Conclusions: The study indicates that melatonin supplementation maintains the liver glycogen levels that decrease in acute swimming exercise, while induced diabetes prevents this maintenance effect in rats.