Yazar "Metin, Aysegul U." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Fabrication of mechanically advanced polydopamine decorated hydroxyapatite/polyvinyl alcohol bio-composite for biomedical applications: In-vitro physicochemical and biological evaluation(Elsevier, 2022) Erdem, Umit; Dogan, Deniz; Bozer, Busra M.; Turkoz, Mustafa B.; Yildirim, Gurcan; Metin, Aysegul U.In this study, polydopamine (PDA) coated hydroxyapatite (HA) reinforced polyvinyl alcohol (PVA) films were produced to be used in biomedical applications such as bone tissue regeneration. pDA is coated not only to prevent the agglomeration of HA when encountering interstitial fluids but also to strongly bind the PVA for the interaction between materials so that the mechanical performance becomes more stabilized. pDA was coated on the hydroxyapatite surface using a radical polymerization technique, and the reinforced PVA were produced with pDA-coated HA (pDA-HA/PVA) nanoparticles. Fundamental characteristic properties of pDA-HA/PVA nanocomposite films were examined by morphological/chemical (SEM-EDS), microstructural (XRD, Ft-IR, and Raman), thermodynamic (TGA and TM), mechanical performance (Vickers microhardness) and biological activity analysis (MTT, genotoxicity and antimicrobial efficacy investigations). Physicochemical analysis showed that all the samples studied exhibited homogeneous mineral distributions through the main structures. According to TGA, TMA and hardness tests, the new composite structure possessed higher mechanical properties than neat PVA. Further, pDA-HA/PVA nanocomposites exhibited high antibacterial capacities against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S. aureus), and Streptococcus mutans (S.mutans). Moreover, the new nanocomposites were noted to present good biocompatibility for fibroblast (L929) cells and to support remarkably MCS cells. All in all, this comprehensive work shows that the thermo-mechanically improved pDA-HA/PVA films will increase the application fields of PVA in biomedical fields especially tooth-bone treatments for coating, filling, or occlusion purposes.Öğe Hydroxyapatite-based nanoparticles as a coating material for the dentine surface: An antibacterial and toxicological effect(Elsevier Sci Ltd, 2020) Erdem, Umit; Dogan, Mustafa; Metin, Aysegul U.; Baglar, Serdar; Turkoz, Mustafa B.; Turk, Mustafa; Nezir, SaffetIn this study, nano sized hydroxyapatite (nHAp) and Ag(I) doped hydroxyapatite (Ag-nHAp) particles were synthesized by the precipitation method and used as a coating material for remineralization on caries-affected dentine samples. Characterization studies of both the synthesized hydroxyapatite-based particles and the coated dentine samples were performed using instrumental techniques such as SEM and FFIR, and then toxicity and antibacterial properties were also evaluated. It was observed that dentine samples were effectively coated by both nHAp and Ag center dot nHAp particles which have no toxic effects. Furthermore, the costing of nano-hydroxyapatite on dentine samples positively contributed to the viability of L929 fibroblast cells and also provided an antibacterial effect against to bacteria such as S. mutants, C. albicans and E. coli bacteria that are most frequently caused caries in the teeth. While all type of bacteria was eliminated by the nHAp coated dentine samples at 24th, Ag-nHAp coated dentine samples removed to all bacteria type at 1st.Öğe Resorbable membrane design: In vitro characterization of silver doped-hydroxyapatite-reinforced XG/PEI semi-IPN composite(Elsevier, 2023) Dogan, Deniz; Erdem, Umit; Bozer, Busra M.; Turkoz, Mustafa B.; Yildirim, Gurcan; Metin, Aysegul U.In this study, the production and characterization of silver-doped hydroxyapatite (AgHA) reinforced Xanthan gum (XG) and Polyethyleneimine (PEI) reinforced semi-interpenetrating polymer network (IPN) biocomposite, known to be used as bone cover material for therapeutic purposes in bone tissue, were performed. XG/PEI IPN films containing 2AgHA nanoparticles were produced by simultaneous condensation and ionic gelation. Characteristics of 2AgHA-XG/PEI nanocomposite film were evaluated by structural, morphological (SEM, XRD, FT-IR, TGA, TM, and Raman) and biological activity analysis (degradation, MTT, genotoxicity, and antimicrobial activity) techniques. In the physicochemical characterization, it was determined that 2AgHA nanoparticles were homogeneously dispersed in the XG/PEI-IPN membrane at high concentration and the thermal and mechanical stability of the formed film were high. The nanocomposites showed high antibacterial activity against Acinetobacter Baumannii (A.Baumannii), Staphylococcus aureus (S.aureus), and Streptococcus mutans (S.mutans). L929 exhibited good biocompatibility for fibroblast cells and was determined to support the formation of MCC cells. It was shown that a resorbable 2AgHA-XG/PEI composite material was obtained with a high degradation rate and 64% loss of mass at the end of the 7th day. Physico-chemically developed biocompatible and biodegradable XG-2AgHA/PEI nanocomposite semi-IPN films possessed an important potential for the treatment of defects in bone tissue as an easily applicable bone cover. Besides, it was noted that 2AgHA-XG/PEI biocomposite could increase cell viability, especially in dental-bone treatments for coating, filling, and occlusion.Öğe Spectral analysis and biological activity assessment of silver doped hydroxyapatite(Taylor & Francis Ltd, 2021) Erdem, Umit; Bozer, Busra Moran; Turkoz, Mustafa B.; Metin, Aysegul U.; Yildirim, Gurcan; Turk, Mustafa; Nezir, SaffetIn this study, the hydroxyapatite biomaterials are produced by the precipitation method and the role of silver doping within the different molar ratios of 2.0, 5.0, and 10.0% are investigated with some fundamental analysis, including powder XRD, SEM, EDS, FTIR, Raman, and material densities. In vitro biocompatibility assessment is conducted with cytotoxicity and agar diffusion tests. Moreover, genotoxicity tests determine whether the biomaterials produced cause the mutations or not. In addition, a hemolytic effect test examines the variation of hemolytic behavior of compounds. Also, the cell migration experiments inspect the influence of silver ion levels in biomaterials on many biological processes. The experimental results reveal that the honeycomb-patterned morphological structures are obtained for all the products. FTIR and Raman analyses reveal that the dramatic changes in the characteristic functional group peaks are obtained with the increment in the amount of silver ions. The experimental parts related to the biocompatibility assessment of the study show that there seems to be deterioration in biocompatibility as the silver ion-doping level increases in the system. To sum up, the ideal doping value for bone tissue engineering applications is found to be 2%.