Yazar "Mohamed, F." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessing STATCOM-Enabled Reactive Power Control in Fragile Power Transmission Systems: A Case Study Perspective(International Information and Engineering Technology Association, 2024) Almamoori, M.; Almaktar, M.; Khaleel, M.; Mohamed, F.; Elbreki, A.The burgeoning energy demands induced by modern civilization necessitate the procurement of additional electrical energy reserves to effectively address this escalating challenge. However, the installation of new power generation units necessitates building/upgrade of accompanying transmission infrastructure, a task fraught with complexities. To augment the loading capacity of existing transmission lines, power engineers have devised efficient solutions, one of which involves the integration of novel devices. This paper delves into the management of reactive power within vulnerable transmission networks, focusing particularly on the pivotal role of Flexible AC Transmission System (FACTS) devices. Among the diverse array of FACTS technologies engineered to fortify grid resilience, the Static Synchronous Compensator (STATCOM) which emerges as a transformative asset. The paper explores the integration of STATCOM within the 132 kV transmission network of the Diyala city ring power system to enhance its stability and operational efficiency. Simulations of the Diyala power network and load flow analysis were conducted using MATLAB/Simulink environment. The results unveiled a notable enhancement in power quality upon the integration of STATCOM, as compared to the base scenario devoid of such augmentation. These findings bear significant implications, offering valuable insights for the Iraqi grid operator and other nations grappling with analogous challenges pertaining to frail power networks. Incorporating such advanced devices into national electrical systems could potentially mitigate operational inefficiencies, defer infrastructure investment and bolster overall grid resilience. © 2024 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).Öğe A novel passive cooling for photovoltaic module temperature reduction using truncated fins: Simulation study(Institute of Electrical and Electronics Engineers Inc., 2022) Elbreki, A.M.; Mohamed, F.; Almaktar, M.This paper aims to evaluate a novel passive thermal regulation technique for a PV module using an extended surface area called "truncated fins". Enhanced solar irradiance intensity on the top surface of the PV module was achieved using a planner reflector with an optimum angle of 60°. The ANSYS, FLUENT software was employed to perform the computational fluid dynamics (CFD) analysis to predict the PV module temperature. To actively cool the PV module, a parametric study in terms of number, thickness, and height of fins was investigated. The distance between the fins also taken into consideration. Engineering equation solver (EES) software was also used to calculate the temperature of the bare PV module i.e., without cooling system. Meanwhile, Response Surface Method is used to determine the optimum number, height, and thickness of fins. The novel passive cooling method showed that the PV system temperature significantly dropped from 64.3 °C without cooling to 44.14 °C with cooling using truncated fins, with a temperature difference of approximately 20.16 °C in comparison to the bare PV module. Additionally, the PV electrical efficiency with truncated fins improved by 9.2% under natural convection. © 2022 IEEE.