Yazar "Muhammed Kalo Hamdan, Ahmed" seçeneğine göre listele
Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe PREDICTION OF MONKEYPOX INFECTION FROM CLINICAL SYMPTOMS WITH ADAPTIVE ARTIFICIAL BEE COLONY-BASED DEEP NEURAL NETWORK(2023-11) Muhammed Kalo Hamdan, AhmedIn 2022, the World Health Organization (WHO) declared an outbreak of monkeypox, a viral zoonotic disease. With time, the number of infections with this disease began to increase in most countries. A human can contract monkeypox by touching with an infected human, or even by touch with animals. In this thesis, diagnostic model for early detection of monkeypox infection based on artificial intelligence methods is proposed. The proposed method is based on training the Artificial Neural Network (ANN) with the Adaptive Artificial Bee Colony (aABC) Algorithm for the classification problem. In the study, the ABC algorithm was preferred instead of classical training algorithms for ANN because of its effectiveness in numerical optimization problem solutions. The ABC algorithm consists of food and limit parameters and three procedures: employed, onlooker and scout bee. In the algorithm standard, artificial onlooker bees are produced as much as the number of artificially employed bees and an equal number of limit values are assigned for all food sources. In the advanced adaptive design, different numbers of artificial onlooker bees are used in each cycle, and the limit numbers are updated. For effective exploitation, onlooker bees tend towards more successful solutions than the average fitness value of the solutions, and limit numbers are updated according to the fitness values of the solutions for efficient exploration. The system was trained and tested on a dataset representing the clinical symptoms of monkeypox infection. The dataset consists of 240 suspected cases, 120 of which are infected and 120 typical cases. The proposed model's results were compared with those of ten other machine-learning models trained on the same dataset. The Deep Learning model achieved the best result with an accuracy of 75%. It was followed by the Random Forest model with an accuracy of 71.1%, while the proposed model came third with an accuracy of 71%.