Yazar "Mustafa, Sithara Mohamed" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Enhancing surface quality and tool life in SLM-machined components with Dual-MQL approach(Elsevier, 2024) Ross, Nimel Sworna; Mashinini, Peter Madindwa; Mishra, Priyanka; Ananth, M. Belsam Jeba; Mustafa, Sithara Mohamed; Gupta, Munish Kumar; Korkmaz, Mehmet ErdiSelective laser melting (SLM) can produce complex metal components with high densities, thereby surpassing the limitations of traditional machining methods. However, achieving accurate dimensions, geometries, and acceptable surface states in parts fabricated through SLM remains a concern as they often fall short compared to traditionally machined components. As a solution, a hybrid additive-subtractive manufacturing (HASM) method was developed to effectively utilize the advantages of both techniques. In this study, SLM-made 316 L stainless steel was machined under distinct cooling conditions to investigate the effects of roughness and tool wear. After a thorough investigation, the dual-MQL strategy was evaluated and compared with dry and MQL cutting strategies. The findings showed that the dual-MQL condition led to a significant reduction in flank wear by 54-56% and 29-34%, respectively, associated with dry and MQL cutting techniques, making it a highly promising key for machining SLM-made steel components. Machine learning techniques are potential tools for prediction and classification capabilities in machining processes. For milling SLM-made 316 L SS, multilayer perceptron (MLP) proved to be the most effective prediction model and for classification MLP and Random forest performed better.Öğe Measuring Surface Characteristics in Sustainable Machining of Titanium Alloys Using Deep Learning-Based Image Processing(Ieee-Inst Electrical Electronics Engineers Inc, 2023) Ross, Nimel Sworna; Shibi, C. Sherin; Mustafa, Sithara Mohamed; Gupta, Munish Kumar; Korkmaz, Mehmet Erdi; Sharma, Vishal S.; Li, Z.A crucial method of maintenance in the manufacturing industry is machine vision-based fault diagnostics and condition monitoring of machine tools. The friction that occurs between the tool and the workpiece has a greater influence on the surface properties of the material. Effective problem diagnosis is necessary for machine systems to continue operations safely. Data-driven approaches have recently exhibited great promise for intelligent fault diagnosis. Unfortunately, the data collected under real-world conditions may be imbalanced, making diagnosis difficult. In dry, minimum quantity lubrication (MQL), and cryogenic circumstances, the method of failure detection of the proposed design is novel. The purpose of this interrogation is to evaluate the roughness profiles obtained from the machined surfaces and class separation. Markov transition field (MTF) is adopted to encode the surface profiles. In addition to this, conditional generative adversarial network (CGAN) for augmentation and bidirectional long-short term memory (BLSTM), multilayer perceptron (MLP), and 2-D-convolutional neural network (CNN) models are used for surface profile classification and correlation with process parameters. According to the study's finding, the 2-D-CNN was significantly more accurate than the models in predicting surface profiles, with an average accuracy of above 99.6% in both training and testing. In the limelight, the suggested approach can demonstrate to be quite useful for categorizing and proposing appropriate machining circumstances, specifically in situations with minimal data.