Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Sager, Abdulmuaen" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Characterization and corrosion behavior of composites reinforced with ZK60, AlN, and SiC particles
    (Elsevier - Division Reed Elsevier India Pvt Ltd, 2023) Sager, Abdulmuaen; Esen, Ismail; Ahlatci, Hayrettin; Turen, Yunus
    In this paper, microstructure, mechanical, immersion and potentiodynamic corrosion behaviours of extruded ZK60 matrix composites reinforced with forty-five lm 15% silicon carbide (SiC) particles and aluminium nitride nanoparticle (AIN) (0.2-0.5% 760 nm) were investigated. The SiC and AlN mixtures, which are the reinforcing elements of the composites, were first mixed with magnesium powder as the main alloy, then pressed under a pressure of 450 MPa and sintered at 420 degrees C. Second, the sintered compacts are placed in the ZK60 alloy matrix at the semi-solid melting temperature, and the melt is mixed mechanically. After the melts are mixed for 30 min and a homogeneous mixture is obtained, the mixtures are poured into metal moulds and composite samples are produced. After homogenization for 24 h at 400 degrees C, the composite samples were extruded at 300 degrees C with an extrusion ratio of 16:1 and a piston speed of 0.3 mm/s. Then, microstructure characterization of all composite samples was performed and potentiodynamic and immersion corrosion behaviours were analyzed in 3.5% NaCl solution. It was seen that the corrosion resistance increased depending on the percentages of SiC and AlN reinforcement elements in the matrix. As a result, it was seen that the potentiodynamic corrosion resistance of rein-forced ZK60 + 15% SiC (ZK60SiC15), ZK60 + 15% SiC + 02AIN (ZK60SiC15AlN0.2) and ZK60 + 15% SiC + 0.5% AIN (ZK60SiC15AlN0.5) compounds increased by 1.6, 1.8 and 3.5 times compared to the unre-inforced ZK60 alloy. The immersion corrosion rates were calculated as 2090.73, 1748.19, 1479.84 and 1397.79 (mg/year) for the unreinforced ZK60, ZK60SiC15, ZK60SiC15AlN0.2 and ZK60SiC15AlN0.5 rein-forcements, respectively. As a result of the SEM and elemental spectrum response analysis of the corro-sion surfaces, the presence of a layer rich in Si-O elements on the surface of the AlN + SiC reinforced composites enhanced corrosion resistance. Additionally, the formation of the Mg2Si intermetallics in the structure of the SiC reinforced composites improved corrosion resistance, according to the XRD results.(c) 2023 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
  • Küçük Resim Yok
    Öğe
    Dry Wear Behaviour of the New ZK60/AlN/SiC Particle Reinforced Composites
    (Mdpi, 2022) Sager, Abdulmuaen; Esen, Ismail; Ahlatci, Hayrettin; Turen, Yunus
    This study deals with the microstructure, mechanical, and wear properties of the extruded ZK60 matrix composites strengthened with 45 mu m, 15% silicon carbide particle (SiC) and 760 nm, 0.2-0.5% aluminium nitride (AlN) nanoparticle reinforcements. First, the reinforcement elements of the composites, SiC and AlN mixtures were prepared in master-magnesium powder, and compacts were formed under 450 MPa pressure and then sintered. Second, the compacted reinforcing elements were placed into the ZK60 alloy matrix at the semi-solid melt temperature, and the melt was mixed by mechanical mixing. After the melts were mixed for 30 min and a homogeneous mixture was formed, the mixtures were poured into metal moulds and composite samples were obtained. After being homogenized for 24 h at 400 degrees C, the alloys were extruded with a 16:1 deformation ratio at 310 degrees C and a ram speed of 0.3 mm/s to create final composite samples. After microstructure characterization and hardness analysis, the dry friction behavior of all composite samples was investigated. Depending on the percentage ratios of SIC and AlN reinforcement elements in the matrix, it was seen that the compressive strength and hardness of the composites increased, and the friction coefficient decreased. While the wear rate of the unreinforced ZK60 alloy was 3.89 x 10(-5) g/m, this value decreased by 26.2 percent to 2.87 x 10(-5) g/m in the 0.5% AlN + 15% SiC reinforced ZK 60 alloy.

| Karabük Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kastamonu Yolu Demir Çelik Kampüsü, 78050 - Kılavuzlar, Karabük, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim