Yazar "Saygin, Hasan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission(Mdpi, 2020) Simsek, Suleyman; Saygin, Hasan; Ozdalyan, BulentIn this study, the effects of the use of improved fusel oil on engine performance and on exhaust emissions in a spark-ignition engine were investigated experimentally in consideration of the water, gum, and moisture content at high compression ratios according to TS EN 228 standards. In the study, a four-stroke, single-cylinder, air-cooled, spark plug ignition engine with an 8/1 compression ratio was used at three different compression ratios (8/1, 8.5/1, 9.12/1). Experiments were performed for six different ratios of fuel blends (F0, F10, F20, F30, F40, and F50) at a constant speed and different loads. The data obtained from the experiments were compared with the original operating parameters of the engine while using gasoline. According to the test results, the optimal engine performance was at a 9.12/1 compression ratio and with a F30 fuel blend. With the increase from an 8/1 to 9.12/1 compression ratio for the F30 fuel blend, the overall efficiency increased by 6.91%, and the specific fuel consumption decreased by 2.35%. The effect of the optimum fusel blend on the emissions was also examined and CO emissions were reduced by 36.82%, HC emissions were reduced by 23.07%, and NOx emissions were reduced by 15.42%, while CO2 emissions were increased by 13.88%.Öğe Improvement of the Properties of Sugar Factory Fusel Oil Waste and Investigation of its Effect on the Performance and Emissions of Spark Ignition Engine(North Carolina State Univ Dept Wood & Paper Sci, 2019) Simsek, Suleyman; Ozdalyan, Bulent; Saygin, HasanThe effects of using blends of unleaded gasoline and refined fusel oil on engine performance and exhaust emissions were analyzed. Prior to the experiment, the fusel oil, which is the final waste product of the sugar factory, was developed to have the chemical properties that can be used in internal combustion engines by removing water and gum contained therein. A four-stroke, single-cylinder, spark-ignition engine was used for the experiments. The tests were conducted at a fixed speed and under different loads. The test fuels were blended with fusel oil contents of 5%, 15%, and 30%. Under each load, the engine's performance and emissions were measured. Throughout the experiments, it was observed that engine torque and fuel consumption increased as the amount of fusel oil in the blend increased. Nitrogen oxide (NOx), carbon monoxide (CO), and hydrocarbon (HC) emissions were reduced as the amount of fusel oil in the blends increased.