Yazar "Selcuk, Sule" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution(Amer Chemical Soc, 2022) Gungor, Melike; Selcuk, Sule; Toptas, Ali; Kilic, AliA bimodal web, where both nanofibers and microfibers are present and distributed randomly across the same web, can deliver high filter efficiency and low pressure drop at the same time since in such a web, filter efficiency is high thanks to small pores created by the presence of nanofibers and the interfiber space created by the presence of microfibers, which is large enough for air to flow through with little resistance. In this work, a bimodal polyamide 6 (PA6) filter web was fabricated via a modified solution blowing (m-SB) technique that produced nanofibers and microfibers simultaneously. Scanning electron microscope (SEM) images of the webs were used to analyze the fiber morphology. Additionally, air permeability, solidity, porosity, filtration performance, and tensile strength of the samples were measured. The bimodal filter web consisted of nanofibers and microfibers with average diameters of 81.5 +/- 127 nm and 1.6 +/- 0.458 mu m, respectively. Its filter efficiency, pressure drop at 95 L min-1, and tensile strength were 98.891%, 168 Pa, and 0.1 MPa, respectively. Its quality factor (QF) and tensile strength were 0.0268 Pa-1 and 0.1 MPa, respectively. When compared with commercially available filters, the bimodal web produced had superior filter performance, constituting a suitable alternative for air filter applications.Öğe Submicron aerosol filtration performance of centrifugally spun nanofibrous polyvinylpyrrolidone media(Sage Publications Inc, 2021) Melike, Gungor; Calisir, Mehmet D.; Akgul, Yasin; Selcuk, Sule; Ali, Demir; Kilic, AliIn this study, polyvinylpyrrolidone-based nanofibrous air filter media were produced via centrifugal spinning and subsequently stabilized by thermal cross-linking process. Samples were produced using solutions with three different polymer concentrations (5, 10 and 20 wt.%) and three different rotational speeds (4000, 6000 and 8000 r/min). After obtaining the optimum web structure with the lowest average fiber diameter and the most uniform distribution, the webs were later thermally cross-linked in order to stabilize polyvinylpyrrolidone against the degradative effects of water. In addition, the webs were subjected to dissolvability tests to see the efficacy of cross-linking treatment. Morphological, structural and chemical characterizations of the polyvinylpyrrolidone webs were performed by SEM, XRD and FTIR, respectively. Finally, filter efficiency and pressure drop were measured to assess filter performance. The results have shown that the lowest average fiber diameter is obtained at the highest rotational speeds. Subsequent thermal cross-linking treatment has been found to prevent fibers from dissolving in water. The produced water-resistant, environmentally friendly polyvinylpyrrolidone nanofibrous filter media has had a satisfactory filtration performance with a high filter efficiency of 99.995% and a high quality factor of 0.39 mm H2O-1.