Yazar "Terzioglu, Cabir" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Development of modulation, pairing mechanism, and slip system with optimum vanadium substitution at Bi-sites in Bi-2212 ceramic structure(Elsevier Science Sa, 2023) Ulgen, Asaf Tolga; Okur, Semih; Erdem, Umit; Terzioglu, Cabir; Turgay, Tahsin; Turkoz, Mustafa Burak; Yildirim, GurcanPresent study focuses extensively on the change in electrical, superconducting and microhardness parameters with partial substitution of trivalent V+3 impurities replacing Bi+3 ions in Bi-2212 ceramic compound with the aid of dc electrical resistivity and microhardness test measurements. Experimental findings, calculation results, and phenomenological discussions provide that the optimum vanadium substitution level is found to be x = 0.01 in the Bi2.0-xVxSr2.0Ca1.1Cu2.0Oy (Bi-2212) ceramic system for the highest conductivity, crystallinity quality, superconducting, and mechanical performance features depending on the decreased microscopic structural problems. All the findings are wholly verified by scanning electron microscopy (SEM) and X-Ray diffraction (XRD) analyses. The dc electrical measurements indicate that the optimum vanadium ions support the pairing mechanism for the formation of new polaronic states in the clusters of microdomains, and hence expand superconducting energy gap due to the enhancement of amplitude part of pair wave function in the spin-density wave systems. The excess vanadium content degrades all the basic thermodynamics and quantum mechanical quantities mentioned due to the stress-induced phase transformation. Numerically, the Bi-2212 advanced ceramic matrix prepared by the optimum vanadium impurity is noticed to present the smallest residual resistivity value of 0.08 m & omega; cm, room temperature resistivity value of 8.84 m & omega; cm, and broadening degree of 0.36 K. Similarly, the ceramic material is found to possess the highest residual resistivity ratio of 3.05, carrier concen-tration number of 0.153041, critical transition offset and onset value of 84.66 K and 85.02 K, respectively. Besides, the microhardness findings reveal that the same compound with the least sensitivity to the applied test loads exhibits the largest Hv value of 4.799 GPa, Young's moduli of 393.303 GPa, yield strength of (0.969 GPa), and elastic stiffness coefficient of 15.5574 (GPa)7/4 under the applied test load of 0.245 N. The XRD in-vestigations show that the presence of optimum vanadium impurity supports the formation of a high super-conducting phase, c-axis length, and average crystallite size. All the findings are morphologically confirmed by the SEM images. It is found that the crystallographically best crystallinity quality and view of surface morphology is observed for the optimum vanadium substitution level. All in all, new higher properties for the conductivity, crystallinity quality, surface morphology, superconducting, and microhardness parameters based on the optimum vanadium replacement encourage the Bi-2212 crystal system to use in much more application places.Öğe Variation of fundamental features of cobalt surface-layered Bi-2212 superconductor materials with diffusion annealing temperature(Elsevier Sci Ltd, 2023) Oz, Ilker; Terzioglu, Cabir; Oz, Muhammed; Ulgen, Asaf Tolga; Turkoz, Mustafa Burak; Erdem, Umit; Yildirim, GurcanThe present study appears extensively on the role of diffusion annealing temperature intervals 650-850 degrees C on electrical conductivity, flux pinning ability, superconducting and crystallinity quality of Cobalt (Co) surface -layered Bi-2212 compounds with experimental tests including dc resistivity, bulk density, X-ray diffraction, critical current density measurements, and theoretical calculations. Experimental findings display that the Co ions may be replaced mostly by bismuth sites in the crystal lattice as a consequence of appropriate cation -vacancy, electron configurations of the outer shell, chemical valence states, and electronegativity of chemical contents in the main composition. The fundamental characteristic features refine considerably with 650 degrees C annealing temperature due to enhancement of antiferromagnetic spin fluctuations in the clusters of micro -domains, re-ordering of Cu-O bonds, stabilization of system, pairing mechanism, modulation of insulating Bi-O double layers, and orbital hybridization mechanisms. Accordingly, bulk Bi-2212 ceramic obtained at optimum annealing temperature exhibits the best conductivity because of a decrease in systematic crystallinity problems and potential grain boundary interaction problems expected in the system. Likewise, the optimum annealing temperature triggers the artificial nucleation regions for 2D discrete pancakelike Abrikosov vortices to decelerate thermal fluxon movements. Moreover, the X-ray diffraction results indicate that optimum Co ions in crystal lattice significantly improve crystal structure quality, grain alignment distributions in c-axis orientation, the extension of high-Tc Bi-2223 superconducting phase, and average crystallite size parameters. Additionally, the nucleation activation energy is noticed to reduce with optimum Co ions due to enhancement in the nucleation stability and crystallization temperature values to higher temperature zones. Namely, optimum Co ions easily diffusing into the lattice points support the formation of surface nucleation. In contrast, after a critical value of 650 degrees C, the characteristic properties mentioned suppress remarkably. In conclusion, the main characteristic features are extensively improved by the optimum diffusion annealing temperature for usage in novel and feasible market areas.