Yazar "Tran, T.T." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Dynamic behaviour of an inclined FG-CNTRC sandwich beam under a moving mass(Publishing House of Natural Science and Technology, VAST, 2024) Tran, T.T.; Esen, I.; Nguyen, D.K.This paper studies dynamic behavior of an inclined sandwich beam with a homogeneous core and functionally graded carbon nanotube reinforced composite (FG-CNTRC) face sheets under a moving mass. The effective properties of the face sheets are estimated by the extended rule of mixture. Three types of carbon nanotube distribution, namely uniform distribution (UD), functionally graded L (FG-L) and V (FG-V) distributions, are considered. Based on the first-order shear deformation theory, a finite element formulation is formulated by using hierarchical functions to interpolate the displacements and rotation. Using the derived formulation, dynamic response of the sandwich beam is computed with the aid of the Newmark method. The obtained result reveals that the inclined angle has a significant influence on the response of the beam, and the dynamic magnification factor decreases for the beam associated with a larger inclined angle. The effects of various parameter, including the nanotube volume fraction, the type of carbon nanotube distribution, the layer thickness ratio and the moving mass velocity on dynamic behavior of the sandwich beam are examined and highlighted. © 2024, Publishing House of Natural Science and Technology, VAST. All rights reserved.Öğe DYNAMIC RESPONSE OF FG-CNTRC BEAMS SUBJECTED TO A MOVING MASS(Publishing House of Natural Science and Technology, VAST, 2022) Esen, I.; Tran, T.T.; Nguyen, D.K.This article presents the forced vibration of composite beams reinforced by single-walled carbon nanotubes (SWCNTs) and subjected to a moving mass. Considering the distribution of carbon nanotubes such as uniform (UD-CNT), functionally graded ? (FG?-CNT) and X (FGX-CNT), three different beams are studied. Based on a third-order shear deformation theory (TSDT), the motion equations of the beams are derived using Hamilton's principle. Including mass interaction forces, the motion equations are transformed into a finite element equation in which a two-node beam element with eight degrees of freedom is utilized. To improve the efficiency of the beam element, the transverse shear rotation is employed as an independent variable in the derivation of the beam element. The vibration characteristics, including the dynamic magnification factors and the time histories for mid-span deflections are computed by using the Newmark method. Numerical result reveal that the vibration of the beams is clearly influenced of the CNT reinforcement, and the dynamic magnification is significantly decreased by increasing the CNT volume fraction. It is also shown that the FGX-CNT beam is the best in dynamic resistance in terms of the lowest dynamic deflection and dynamic magnification factors. The effects of the total volume fraction and the moving load velocity on the dynamic behaviour of the functionally graded carbon nanotube reinforced composites (FG-CNTRC) beams are examined in detail and highlighted. © 2022, Publishing House of Natural Science and Technology, VAST. All rights reserved.