QUENCHING BEHAVIOR OF SEMILINEAR HEAT EQUATIONS WITH SINGULAR BOUNDARY CONDITIONS

dc.authoridSelcuk, Burhan/0000-0002-5141-5148
dc.authoridOZALP, Nuri/0000-0002-8028-3391
dc.contributor.authorSelcuk, Burhan
dc.contributor.authorOzalp, Nuri
dc.date.accessioned2024-09-29T16:11:27Z
dc.date.available2024-09-29T16:11:27Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this article, we study the quenching behavior of solution to the semilinear heat equation v(t) = v(xx) + f (v), with f(v) = -v(-r) or (1 - v)(-r) and v(x)(0,t) = v(-P)(0,t), v(x)(a,t) = (1-v(a,t))(-q). For this, we utilize the quenching problem u(t) = u(xx) with u(x) (0, t) = u(-P)(0,t), u(x)(a,t) = (1 - u(a,t))(-q). In the second problem, if u(0) is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x = 0 (x = a) and u(t) blows up at quenching time. Further, we obtain a local solution by using positive steady state. In the first problem, we first obtain a local solution by using monotone iterations. Finally, for f(v) = -v(-r) ((1 - v)(-r)), if v(0) is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x = 0 (x = a) and v(t) blows up at quenching time.en_US
dc.identifier.issn1072-6691
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8426
dc.identifier.wosWOS:000367238900003en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherTexas State Univen_US
dc.relation.ispartofElectronic Journal of Differential Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHeat equationen_US
dc.subjectsingular boundary conditionen_US
dc.subjectquenchingen_US
dc.subjectmaximum principleen_US
dc.subjectmonotone iterationen_US
dc.titleQUENCHING BEHAVIOR OF SEMILINEAR HEAT EQUATIONS WITH SINGULAR BOUNDARY CONDITIONSen_US
dc.typeArticleen_US

Dosyalar