SOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORS
Küçük Resim Yok
Tarih
2018
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Kangwon-Kyungki Mathematical Soc
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: T eta (f; x, y) = integral integral(RK)-K-2 eta (t - x, s - y, f (t, s)) dsdt, (x, y) is an element of R-2, eta is an element of Lambda, where the function f : R-2 -> R is Lebesgue measurable on R-2 and Lambda is a non-empty set of indices. Further, we provide an example to support these theoretical results.
Açıklama
Anahtar Kelimeler
Generalized Lipschitz condition, Weighted pointwise convergence, Rate of convergence
Kaynak
Korean Journal of Mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
26
Sayı
3