SOME WEIGHTED APPROXIMATION PROPERTIES OF NONLINEAR DOUBLE INTEGRAL OPERATORS

Küçük Resim Yok

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Kangwon-Kyungki Mathematical Soc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, we present some recent results on weighted pointwise convergence and the rate of pointwise convergence for the family of nonlinear double singular integral operators in the following form: T eta (f; x, y) = integral integral(RK)-K-2 eta (t - x, s - y, f (t, s)) dsdt, (x, y) is an element of R-2, eta is an element of Lambda, where the function f : R-2 -> R is Lebesgue measurable on R-2 and Lambda is a non-empty set of indices. Further, we provide an example to support these theoretical results.

Açıklama

Anahtar Kelimeler

Generalized Lipschitz condition, Weighted pointwise convergence, Rate of convergence

Kaynak

Korean Journal of Mathematics

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

26

Sayı

3

Künye