Noise Reduction using MRF and Block-Based Background Modeling in Dynamic Scenes Input

dc.contributor.authorSavas, M. Fatih
dc.contributor.authorDemirel, Huseyin
dc.date.accessioned2024-09-29T16:11:28Z
dc.date.available2024-09-29T16:11:28Z
dc.date.issued2017
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIdentifying the moving foreground object in dynamic scenes and making the analysis of video sequences accurate and powerful is an important process for video surveillance systems. Environmental factors such as environmental noises and sudden light changes are the main factors of the degradation of the background model. Complex algorithms are needed to create a strong background against these factors. In this study, We increased the noise immunity of the background model exposed to environmental noise by applying Markov random field (MRF) to block-based modified KDE (Kernel Density Estimation). We also reduced the storage space requirement with the KDE structure we created in blocks. Thus we have increased the applicability of this structure to a real-time structure.en_US
dc.description.sponsorshipKarabuk University [KBU-BAP-16/1-DR-167]en_US
dc.description.sponsorshipThis work/study is supported by Karabuk University graduate degrees thesis project. Project no is KBU-BAP-16/1-DR-167.en_US
dc.identifier.endpage59en_US
dc.identifier.issn1738-7906
dc.identifier.issue1en_US
dc.identifier.startpage54en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8465
dc.identifier.volume17en_US
dc.identifier.wosWOS:000395451900009en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherInt Journal Computer Science & Network Security-Ijcsnsen_US
dc.relation.ispartofInternational Journal of Computer Science and Network Securityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectKernel Density Estimationen_US
dc.subjectMarkov random fielden_US
dc.subjectBackground modelingen_US
dc.subjectAdaptive threshold parameteren_US
dc.titleNoise Reduction using MRF and Block-Based Background Modeling in Dynamic Scenes Inputen_US
dc.typeArticleen_US

Dosyalar