Optimization of annealing and 3d printing process parameters of pla parts
Küçük Resim Yok
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Fused Filament Fabrication (FFF) has gained significant popularity as the prevalent additive manufacturing method due to its ability to reduce production time and expenses. However, the constraints of limited dimensional precision, poor surface quality, and relatively low Ultimate Tensile Strength (UTS) hinder compliance with the stringent regulatory norms of conventional manufacturing, necessitating post-processing for enhancement. In this investigation, the response surface method was used to optimize annealing and specific printing parameters to enhance the quality of PLA parts produced by FFF. Tensile specimens were printed with varying production parameters and annealed at varying heat treatment parameters. The following parameters are specified: layer height (0.1, 0.2, and 0.3 mm), build orientation (0°, 22.5°, 45°, 67.5°, and 90°), annealing temperature (70, 90, 110, and 130 ºC), and annealing time (60, 120, 180, and 240 min). The optimization technique aimed to enhance the UTS and match the CAD dimensions while minimizing surface roughness. The RSM optimization analysis identified the optimal parameters as layer height of 0.1 mm, build orientation at 0 degrees, annealing temperature of 110 degrees, and annealing time of 180 min. The consistent achievement of high levels of agreement between estimated and experimental response values substantiates the proposed models. A composite desirability value of 0.80 was derived for the variables due to the optimization investigation.
Açıklama
Anahtar Kelimeler
Kaynak
International Journal of 3D Printing Technologies and Digital Industry
WoS Q Değeri
Scopus Q Değeri
Cilt
8
Sayı
2