WEAK CONVERGENCE THEOREM FOR THE ERGODIC DISTRIBUTION OF A RANDOM WALK WITH NORMAL DISTRIBUTED INTERFERENCE OF CHANCE

dc.contributor.authorHanalioglu, Z.
dc.contributor.authorKhaniyev, T.
dc.contributor.authorAgakishiyev, I.
dc.date.accessioned2024-09-29T16:11:27Z
dc.date.available2024-09-29T16:11:27Z
dc.date.issued2015
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this study, a semi-Markovian random walk process (X (t)) with a discrete interference of chance is investigated. Here, it is assumed that the zeta(n), n = 1; 2; 3, ..., which describe the discrete interference of chance are independent and identically distributed random variables having restricted normal distribution with parameters (a; sigma(2)). Under this assumption, the ergodicity of the process X (t) is proved. Moreover, the exact forms of the ergodic distribution and characteristic function are obtained. Then, weak convergence theorem for the ergodic distribution of the process W-a (t) = X (t) = a is proved under additional condition that sigma/a -> 0 when a -> infinity.en_US
dc.identifier.endpage73en_US
dc.identifier.issn2146-1147
dc.identifier.issue1en_US
dc.identifier.startpage61en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8429
dc.identifier.volume5en_US
dc.identifier.wosWOS:000374003500006en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherTurkic World Mathematical Socen_US
dc.relation.ispartofTwms Journal of Applied and Engineering Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRandom walken_US
dc.subjectdiscrete interference of chanceen_US
dc.subjectnormal distributionen_US
dc.subjectergodic distributionen_US
dc.subjectweak convergenceen_US
dc.titleWEAK CONVERGENCE THEOREM FOR THE ERGODIC DISTRIBUTION OF A RANDOM WALK WITH NORMAL DISTRIBUTED INTERFERENCE OF CHANCEen_US
dc.typeArticleen_US

Dosyalar