Real time traffic signal timing approach based on artificial neural network

dc.contributor.authorKaraşahin, Ali Tahir
dc.contributor.authorTümer, Abdullah Erdal
dc.date.accessioned2024-09-29T16:33:17Z
dc.date.available2024-09-29T16:33:17Z
dc.date.issued2020
dc.departmentKarabük Üniversitesien_US
dc.description.abstractAs the population increases, is more and more increasing the number of vehicles in cities. Theincreasing number of vehicle make traffic management complicated. Difficult trafficmanagement leads to more fuel consumption, CO2 and other harmful emissions. Therefore, realtime optimization of traffic lights (signaling) used in traffic management can make trafficmanagement more efficient. In this study, green light time is optimized by estimating thenumber of vehicles in an intersection with signal lights in Konya city center through artificialneural network. The results are evaluated with different performance criteria and it has beenshown that the developed estimation model can be successfully used to optimize the green lightdurations.en_US
dc.identifier.endpage54en_US
dc.identifier.issue1en_US
dc.identifier.startpage49en_US
dc.identifier.trdizinid358608en_US
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/358608
dc.identifier.urihttps://hdl.handle.net/20.500.14619/11722
dc.identifier.volume8en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofManas Journal of Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleReal time traffic signal timing approach based on artificial neural networken_US
dc.typeArticleen_US

Dosyalar