ON CERTAIN MULTIDIMENSIONAL NONLINEAR INTEGRALS
Küçük Resim Yok
Tarih
2020
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ankara Univ, Fac Sci
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The aim of the paper is to obtain generalized convergence results for nonlinear multidimensional integrals of the form: L-eta(omega; x) = eta(n)/Omega(n-1) integral(D) K(eta vertical bar t - x vertical bar, omega(t))dt. We will prove some theorems concerning pointwise convergence of the family L-eta(omega; x) as eta -> infinity at a fixed point x is an element of D which represents any generalized Lebesgue point of the function omega is an element of L-1 (D); where D is an open bounded subset of R-n, Moreover, we will consider the case D = R-n.
Açıklama
Anahtar Kelimeler
generalized Lebesgue point, Taylor expansion, pointwise convergence
Kaynak
Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
69
Sayı
2