ON CERTAIN MULTIDIMENSIONAL NONLINEAR INTEGRALS

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ankara Univ, Fac Sci

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The aim of the paper is to obtain generalized convergence results for nonlinear multidimensional integrals of the form: L-eta(omega; x) = eta(n)/Omega(n-1) integral(D) K(eta vertical bar t - x vertical bar, omega(t))dt. We will prove some theorems concerning pointwise convergence of the family L-eta(omega; x) as eta -> infinity at a fixed point x is an element of D which represents any generalized Lebesgue point of the function omega is an element of L-1 (D); where D is an open bounded subset of R-n, Moreover, we will consider the case D = R-n.

Açıklama

Anahtar Kelimeler

generalized Lebesgue point, Taylor expansion, pointwise convergence

Kaynak

Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics

WoS Q Değeri

N/A

Scopus Q Değeri

Cilt

69

Sayı

2

Künye