Convergence of Singular Integral Operators in Weighted Lebesgue Spaces
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
European Journal Pure & Applied Mathematics
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, the pointwise approximation to functions f epsilon L-1,(w) (a, b) by the convolution type singular integral operators given in the following form: L-lambda(f; x) = integral(b)(a) f(t) K(lambda()t-x)dt, x epsilon(a,b), lambda epsilon A subset of R-0(+) where (a,b) stands for arbitrary closed, semi closed or open bounded interval in R or R itself L-1,(w)(a,b) denotes the space of all measurable but non-integrable functions f for which vertical bar f/w vertical bar integrable on (a,b) and w : R R+ is a corresponding weight function, at mu-generalized Lebesgue point and the rate of convergenceat this point are studied.
Açıklama
Anahtar Kelimeler
Generalized Lebesgue point, Weighted pointwise convergence, Rate of convergence
Kaynak
European Journal of Pure and Applied Mathematics
WoS Q Değeri
N/A
Scopus Q Değeri
Cilt
10
Sayı
2