On pointwise convergence of bivariate nonlinear singular integral operators
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Academic Publication Council
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In this paper, we present some theorems on pointwise convergence and the rate of pointwise convergence for the family of nonlinear bivariate singular integral operators of the following form: T(lambda()f;x,y) = integral integral(D) K-lambda (t-x,s-yf(t,s))dsdt, (x,y)is an element of D, lambda is an element of Lambda where f is a real valued and integrable function on a bounded arbitrary closed, semi-closed or open region D = x in R-2 or D = R-2 and Lambda is the set of non-negative indices with accumulation point lambda(0)
Açıklama
Anahtar Kelimeler
Lipschitz condition, pointwise convergence, rate of convergence, nonlinear bivariate integral operator, generalized Lebesgue point
Kaynak
Kuwait Journal of Science
WoS Q Değeri
Q3
Scopus Q Değeri
Cilt
44
Sayı
2