Ters sarkaç sistemi için lqr kontrolcü tasarımında genetik algoritma optimizasyonu
Küçük Resim Yok
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada kontrol tekniklerinin performanslarını incelemek için sıklıkla tercih edilen ters sarkaç sistemi ele alınmıştır. Ters sarkaç sisteminin doğrusal olmayan yapısı nedeniyle de kontrolü zor bir mühendislik problemidir. Ters sarkaç problemine yönelik sistemin hareket denklemleri çıkartılmış, durum-uzay formunda ifade edilmiş ve tasarım kriterleri belirlenmiştir. Ters sarkaç sisteminde tasarım kriteri olarak arabanın ve sarkacın pozisyonlarını kontrol etmek hedeflenmiştir. Bu hedeflere uygun olarak kontrol tekniği belirlenmiştir. Kontrolcü olarak Lineer Kuadratik Regülatör (LQR) tekniği kullanılmıştır. LQR kontrolcüsü ile birden fazla durum değişkenleri kontrol edilebildiği için ters sarkaç sisteminde tercih edilmiştir. Gerçekleştirilen çalışmada LQR kontrolcüsünün performansını doğrudan etkileyen Q ve R matrisleri Genetik Algoritma ile optimize edilmiştir. Optimize edilmiş LQR kontrolcüsü ve standart LQR kontrolcüsü olarak iki farklı yöntem uygulanmıştır. Genetik Algoritma geniş arama algoritmalarının aksine en iyiye ulaşmak için bir yaklaşımı olmadığından en iyiye ulaşamayabilir fakat zaman kısıtlamalarını dikkate almada en iyi algoritmalardan birisi olduğu için tercih edilmiştir. Ters sarkaç sisteminde yapılan optimizasyonlarda amaç fonksiyonları genellikle referans değere yükselme süresi, oturma süresi ve kalıcı durum hatalarının toplanması olarak kullanılmaktadır. Gerçekleştirilen çalışmada farklı olarak Genetik Algoritmanın uygunluk fonksiyonu için bir öneri sunulmuştur. Bu öneri, arabanın referans pozisyon değeri ile arabanın pozisyon değeri arasındaki farkın minimize edilmesi şeklinde tasarlanmıştır. Genetik Algoritma (GA) uygunluk fonksiyonunun çalışmada önerilen formül ile kullanıldığında kabul edilebilir sonuçlar ürettiği gösterilmiştir. Gerçekleştirilen deneyler sonucunda Genetik Algoritma ile optimizasyonu yapılan LQR kontrolcüsü, deneme yanılma yöntemiyle bulunan değerler ile çalışan LQR kontrolcüsüne göre daha başarılı olduğu gözlemlenmiştir. Aynı zamanda Q ve R matrisleri Genetik Algoritma ile belirlendiği için bu katsayıların belirlenmesinde kaybedilen zamanın önüne geçilmiştir.
Açıklama
Anahtar Kelimeler
Kaynak
Avrupa Bilim ve Teknoloji Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
0
Sayı
2020