STREAM TEXT DATA ANALYSIS ON TWITTER USING APACHE SPARK STREAMING

dc.authoridOGUL, Iskender Ulgen/0000-0003-4882-5266
dc.contributor.authorHakdagli, Ozlem
dc.contributor.authorOzcan, Caner
dc.contributor.authorOgul, Iskender Ulgen
dc.date.accessioned2024-09-29T16:11:37Z
dc.date.available2024-09-29T16:11:37Z
dc.date.issued2018
dc.departmentKarabük Üniversitesien_US
dc.description26th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 02-05, 2018 -- Izmir, TURKEYen_US
dc.description.abstractWith today's developing technology, people's access to information and its production have reached a very fast level. These generated and obtained information are instantly created, entered into data systems and updated. Sources of streaming data can be transformed into valuable analysis results when they are handled with targeted methods. In this study, a text data field is determined to perform analysis on instantaneous generated data and Twitter, the richest platform for instant text data, is used. Twitter instantly generates a variety of data in large quantities and it presents it as open source using an API. A machine learning framework Apache Spark's stream analysis environment is used to analyze these resources. Situation analysis was performed using Support Vector Machine, Decision Trees and Logistic Regression algorithms presented under this environment. The results are presented in tables.en_US
dc.description.sponsorshipIEEE,Huawei,Aselsan,NETAS,IEEE Turkey Sect,IEEE Signal Proc Soc,IEEE Commun Soc,ViSRATEK,Adresgezgini,Rohde & Schwarz,Integrated Syst & Syst Design,Atilim Univ,Havelsan,Izmir Katip Celebi Univen_US
dc.identifier.isbn978-1-5386-1501-0
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8576
dc.identifier.wosWOS:000511448500393en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherIeeeen_US
dc.relation.ispartof2018 26th Signal Processing and Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApache Sparken_US
dc.subjectSpark Streamingen_US
dc.subjectTwitteren_US
dc.subjectMachine Learningen_US
dc.subjectText Miningen_US
dc.titleSTREAM TEXT DATA ANALYSIS ON TWITTER USING APACHE SPARK STREAMINGen_US
dc.typeConference Objecten_US

Dosyalar