Short-term Load Forecasting in Grid-connected Microgrid

dc.authoridYusupov, Ziyodulla/0000-0002-0798-2903
dc.contributor.authorIzzatillaev, Jurabek
dc.contributor.authorYusupov, Ziyodulla
dc.date.accessioned2024-09-29T16:12:16Z
dc.date.available2024-09-29T16:12:16Z
dc.date.issued2019
dc.departmentKarabük Üniversitesien_US
dc.description7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG) -- APR 25-26, 2019 -- Istanbul, TURKEYen_US
dc.description.abstractThe integration of distributed energy resources (DER) into main grid need to consider the influence of many factors. One of them is the determination of electric load in Microgrid. Creating a feasible and efficient Microgrid based on the predicted power load is more relevant. The paper analyzes the forecasting of the electric energy consumption in Microgrids, analyzes the area of applicability, advantages and disadvantages of short-term forecasting methods of power consumption. Two methods - Group Method of Data Handling (GMDH) and Artificial Neural Networks (ANN) are used to determine short-term load forecasting.en_US
dc.description.sponsorshipIEEE,IEEE, Power & Energy Soc,Republ Turkey, Minist Energy & Nat Resources,Republ Turkey, Minist Environm & Urbanisat,Republ Turkey, Minist Ind & Technol,Republ Turkey, Minist Trade,Elder,HHB Expoen_US
dc.identifier.endpage75en_US
dc.identifier.isbn978-1-7281-1315-9
dc.identifier.startpage71en_US
dc.identifier.urihttps://hdl.handle.net/20.500.14619/8637
dc.identifier.wosWOS:000518924200009en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof2019 7th International Istanbul Smart Grids and Cities Congress and Fair (Icsg Istanbul 2019)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectforecastingen_US
dc.subjectloaden_US
dc.subjectmicrogriden_US
dc.titleShort-term Load Forecasting in Grid-connected Microgriden_US
dc.typeConference Objecten_US

Dosyalar