Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model
dc.authorid | Kutucu, Hakan/0000-0001-7144-7246 | |
dc.contributor.author | Kutucu, Hakan | |
dc.contributor.author | Almryad, Ayad | |
dc.date.accessioned | 2024-09-29T16:11:23Z | |
dc.date.available | 2024-09-29T16:11:23Z | |
dc.date.issued | 2016 | |
dc.department | Karabük Üniversitesi | en_US |
dc.description | 1st IEEE International Conference on Data Stream Mining and Processing (DSMP) -- AUG 23-27, 2016 -- Lviv, UKRAINE | en_US |
dc.description.abstract | In this work, we develop an artificial neural network model to predict the potential of solar power in Libya. We use multilayered, feed-forward, back-propagation neural networks for the mean monthly solar radiation using the data of 25 cities spread over Libya for the period of 6 years (2010-2015). Meteorological and geographical data (longitude, latitude, and altitude, month, mean sunshine duration, mean temperature, and relative humidity) are used as input to the network. The solar radiation is in the output layer of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation for training and testing datasets are higher than 98%. Hence, the predictions from ANN model in locations where solar radiation data are not available has a high reliability. | en_US |
dc.description.sponsorship | IEEE,softserve,GlobalLogic,CIKLUM,Lviv IT Cluster,Lviv City Council,Inst Territories Transformat,THEY,ARENA,NEADEVIS,ykpTeaekom,IEEE Ukraine Sect,IEEE Ukraine Sect SP AP C EMC COM Soc Joint Chapter,IEEE Ukraine Sect IM CIS Soc Joint Chapter,IEEE Ukraine Sect AP ED MTT CPMT SSC Soc Joint Chapter | en_US |
dc.identifier.endpage | 359 | en_US |
dc.identifier.isbn | 978-1-5090-3736-0 | |
dc.identifier.startpage | 356 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14619/8399 | |
dc.identifier.wos | WOS:000390239100060 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ieee | en_US |
dc.relation.ispartof | Proceedings of the 2016 Ieee First International Conference On Data Stream Mining & Processing (Dsmp) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Artificial neural network | en_US |
dc.subject | solar-radiation potential | en_US |
dc.subject | renewable energy | en_US |
dc.subject | Libya | en_US |
dc.title | Modeling of Solar Energy Potential in Libya using an Artificial Neural Network Model | en_US |
dc.type | Conference Object | en_US |