Blow up for porous medium equations

Küçük Resim Yok

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In various branches of applied sciences, porous medium equations exist where this basic model occurs in a natural fashion. It has been used to model fluid flow, chemical reactions, diffusion or heat transfer, population dynamics, etc.. Nonlinear diffusion equations involving the porous medium equations have also been extensively studied. However, there has not been much research effort in the parabolic problem for porous medium equations with two nonlinear boundary sources in the literature. This paper adresses the following porous medium equations with nonlinear boundary conditions. Firstly, we obtain finite time blow up on the boundary by using the maximum principle and blow up criteria and existence criteria by using steady state of the equation $k_{t}=k_{xx}^{n},(x,t)\\in (0,L)\\times (0,T)\\ $with $ k_{x}^{n}(0,t)=k^{\\alpha }(0,t)$, $k_{x}^{n}(L,t)=k^{\\beta }(L,t)$,$\\ t\\in (0,T)\\ $and initial function $k\\left( x,0\\right) =k_{0}\\left( x\\right) $,$\\ x\\in \\lbrack 0,L]\\ $where $n>1$, $\\alpha \\ $and $\\beta \\ $and positive constants.

Açıklama

Anahtar Kelimeler

Kaynak

Mathematical Sciences and Applications E-Notes

WoS Q Değeri

Scopus Q Değeri

Cilt

9

Sayı

1

Künye