Some rings for which the cosingular submodule of every module is a direct summand

dc.contributor.authorKeskin, Derya Tütüncü
dc.contributor.authorOrhan, Nil Ertas
dc.contributor.authorF., Patrick Smıth
dc.contributor.authorTrıbak, Rachid
dc.date.accessioned2024-09-29T16:35:03Z
dc.date.available2024-09-29T16:35:03Z
dc.date.issued2014
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThe submodule Z(M) = ∩{N | M/N is small in its injective hull} was introduced by Talebi and Vanaja in 2002. A ring R is said to have property (P ) if Z(M) is a direct summand of M for every R-module M . It is shown that a commutative perfect ring R has (P ) if and only if R is semisimple. An example is given to show that this characterization is not true for noncommutative rings. We prove that if R is a commutative ring such that the class {M ∈ Mod−R | ZR(M) = 0} is closed under factor modules, then R has (P ) if and only if the ring R is von Neumann regular.en_US
dc.identifier.endpage657en_US
dc.identifier.issn1300-0098
dc.identifier.issue4en_US
dc.identifier.startpage649en_US
dc.identifier.trdizinid186864en_US
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/186864
dc.identifier.urihttps://hdl.handle.net/20.500.14619/12462
dc.identifier.volume38en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofTurkish Journal of Mathematicsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.titleSome rings for which the cosingular submodule of every module is a direct summanden_US
dc.typeArticleen_US

Dosyalar