On the existence and uniqueness of solutions of a certain class of non-linear singular integral equations

dc.contributor.authorDüz, Murat
dc.date.accessioned2024-09-29T16:35:13Z
dc.date.available2024-09-29T16:35:13Z
dc.date.issued2011
dc.departmentKarabük Üniversitesien_US
dc.description.abstractIn this study, the existence of a solution of the non-linear singular integral equation system$w(z) = f1 \\biggl ( z,w(z),h(z), T_G g_1(· ,w(·), h(·))(z)$, $. \\hspace{40mm} \\Pi_Gg_1(· ,w(·), h(·))(z) \\biggr )$, $h(z) = f_2 \\biggl ( z,w(z), h(z), T_Gg_2(·,w(·), h(·))(z)$,$. \\hspace{40mm} \\Pi_Gg_2(· ,w(·), h(·))(z) \\biggr )$ , has been investigated. This system is more general than the one$w(z) = f_1 (z,w(z), h(z), T_Gg_1(· ,w(·), h(·))(z))$, $h(z) = f_2 (z,w(z), h(z),\\Pi_Gg_2(·,w(·), h(·)) (z))$,studied by Musayev and Duz (Existence and uniqueness theorems for a certain class of non linear singular integral equations SJAM 10 (1), 3– 18, 2009). Here, $T_Gf(z)$ and $\\Pi_Gf(z) are the Vekua integral operators defined by $T_Gf(z)=- \\frac{1}{\\pi} \\int_G \\int \\frac{f(\\varsigma)}{\\varsigma - z} d\\xi d\\eta$, $\\Pi_Gf(z)=- \\frac{1}{\\pi} \\int_G \\int \\frac{f(\\varsigma)}{(\\varsigma - z)^2} d\\xi d\\eta$.en_US
dc.identifier.endpage52en_US
dc.identifier.issn1303-5010
dc.identifier.issue1en_US
dc.identifier.startpage41en_US
dc.identifier.trdizinid121502en_US
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/121502
dc.identifier.urihttps://hdl.handle.net/20.500.14619/12606
dc.identifier.volume40en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.institutionauthorDüz, Murat
dc.language.isoenen_US
dc.relation.ispartofHacettepe Journal of Mathematics and Statisticsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMatematiken_US
dc.subjectİstatistik ve Olasılıken_US
dc.titleOn the existence and uniqueness of solutions of a certain class of non-linear singular integral equationsen_US
dc.typeArticleen_US

Dosyalar