Yazar "Ergani, Songul Kaskun" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Al2O3/SiO2 nanoparticles-coated TiO2 catalyst on the exhaust pollutants of a diesel engine(Springer Heidelberg, 2021) Ergani, Songul Kaskun; Kocaman, Ayhan; Akinay, YukselIn this study, the effect of the catalytic converter (cc) coated with Al2O3/SiO2/TiO2 catalyst on the exhaust emissions of CO, NOX and HC was measured at 0, 25, 50, 75 and 100% load conditions from the diesel engine. Al2O3/SiO2-coated TiO2 powders were prepared by wet impregnation method and then coated to 32 pieces of 11 x 11 cm aluminium wire mesh plate by calcination method. The synthesised catalyst characterization was performed by XRD, EDX, SEM analyses and UV spectrophotometer. The exhaust emissions of CO, HC and NOX from the diesel engine were measured by GA-4040 gas analyser with and without a catalytic convertor. The emission results were evaluated for statistical analysis by IBM SPSS 22 Statistic Data Editor. Hence, it was seen that the modified catalytic convertor represented 43.05% reduction of NOX emission as a maximum at 75% load. Moreover, 56.84% decrease was seen in HC emissions as a maximum at 25% load. Furthermore, CO emissions reduction was measured to be 66.7% as maximum at 25% load. Consequently, the results of this experimental study showed that the catalytic converter coated with Al2O3/SiO2/TiO2 catalyst greatly reduced the exhaust emissions from the diesel engine and the synthesised catalyst can be alternative to overwhelm air pollution problem emitted from transportation.Öğe Hydrogen storage capabilities of ionothermally synthesized covalent triazine frameworks (CTFs)(Pergamon-Elsevier Science Ltd, 2023) Ergani, Songul Kaskun; Sonmez, Turgut; Uecker, Jan; Arpa, Beyza; Palkovits, ReginaCovalent triazine frameworks (CTFs) represent an attractive new type of porous organic compounds demonstrating promising stability, nontoxicity, nitrogen functionalities and adjustable porosity. They have been greatly investigated in various applications; however, the hydrogen storage capacities of CTFs have been poorly described so far. Here, we present hydrogen storage capacities of a series of covalent triazine frameworks based on four different applied monomers (DCP, DCBP, mDCB and pDCB) synthesized via classical ionothermal route (ZnCl2, 400/600 degrees C). Among the synthesized CTFs, DCP shows the highest hydrogen storage capacity of 4.02 wt% at 20 bar, almost two times higher compared to the lowest value of 2.43 wt% for CTF DCBP. Furthermore, the CTF DCP outperforms with a H-2 uptake of 2.95 wt% at 1 bar pressure and 77 K state-of-the-art 2D porous organic polymers and shows very high uptake capability within the reported porous polymer materials. The high hydrogen storage capability of DCP is correlated to the high nitrogen (N) content of 20.4 wt%, high fraction of pyridinic N-sites (50.3%), the largest defect structure, highest crystallinity and microporosity among the synthesized CTFs. The specific surface area (SSA) and the total pore volume (TPV) seem to not have an influential impact on the H(2 )storage capacity as the CTF DCP exhibits the highest H-2 storage capacity with a SSA of 1737 m(2) g(-1) and a TPV of 0.9 cm(3) g(-1), the lowest values among the CTFs.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Öğe The impacts of nano fuels containing Fe-Ni-TiO2/activated carbon nanoparticles on diesel engine performance and emission characteristics(Taylor & Francis Ltd, 2023) Calhan, Rahman; Ergani, Songul Kaskun. Biofuels, which are widely used as alternative fuels to reduce fossil fuel consumption and replace them with fossil fuel-like energy sources, are increasingly being supplemented with nanoparticles (NP) to overcome their limitations, including lower energy content and higher emissions. The study aimed to examine the impact of Fe-Ni-TiO2/activated carbon (AC) nanoparticles, produced by the authors, on engine performance and emissions when added to diesel/biodiesel fuel blends. The produced Fe-Ni-TiO2/AC NP was employed as an additive in palm oil (PO)/diesel fuel blends at 50 and 100 ppm concentrations. The results revealed that compared to standard diesel, employing Fe-Ni-TiO2/AC NPs lowered emissions including smoke, carbon monoxide (CO), and hydrocarbon (HC) in all fuel blends while increasing nitrogen oxide (NOx). In the DNP30-100 fuel blend at 2500 W engine load, there was an increase in NOx by 8% and a decrease in CO, HC, and smoke emissions by 70.3%, 86.3%, and 57.5%, respectively, compared to standard diesel. Furthermore, a decrease of 11.38% was observed in brake-specific fuel consumption, while brake thermal efficiency increased by 16.59% compared to diesel. The overall results suggest that using Fe-Ni-TiO2/AC as an additive in a diesel-biodiesel fuel blend can improve engine performance and decrease emissions.Öğe Synthesis of Fe-Ni-TiO2/activated carbon nanoparticles and evaluation of catalytic activity in a palm oil/diesel fuel blended diesel engine and optimization with RSM(Edp Sciences S A, 2023) Calhan, Rahman; Ergani, Songul Kaskun; Uslu, SametAlthough diesel engine emissions, which can pose serious risks to the environment and human health, can be reduced with biodiesel/diesel fuel blends, combining diesel fuel with an oxidation catalyst with a sizable oxygen storage capacity can more effectively reduce emissions from diesel engines. In this study, Fe-Ni-TiO2/Activated Carbon (AC) catalyst was produced and used as an oxidation catalyst. Experimental studies were performed on a four-stroke diesel engine by adding at numerous concentrations (0-50-100 ppm) Fe-Ni-TiO2/AC nanoparticles (NP) to the Palm Oil biodiesel (PO)-diesel fuel blend. Optimum conditions were determined by modelling the obtained data in response surface methodology (RSM). The Fe-Ni-TiO2/AC catalyst outcomes in a considerable decrease in hydrocarbon (HC), nitrogen oxides (NOx), carbon monoxide (CO), and smoke emissions. Optimization outcomes pointed out that the ideal diesel engine running requirements were determined to be 1750 W engine load, 100 ppm the NP amount, and 30% the PO ratio. Responses for these optimum conditions for Brake Specific Fuel Consumption (BSFC), Brake Thermal Efficiency (BTHE), CO, HC, NOx, and smoke were determined as 999.06 g/kWh, 27.07%, 0.032%, 40.63 ppm, 818.18 ppm, and 4.26%, respectively. The R-2 values showed that the result obtained from the created model was in good agreement with the experimental results.