Yazar "Fidan, Can Bulent" seçeneğine göre listele
Listeleniyor 1 - 10 / 10
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator(Springer, 2020) Koyuncu, Ismail; Tuna, Murat; Pehlivan, Ihsan; Fidan, Can Bulent; Alcin, MuratIn this paper, a novel chaos-ring based dual entropy core TRNG architecture on FPGA with high operating frequency and high throughput has been performed and presented. The design of dual entropy core TRNG has been generated by uniting the chaotic system-based RNG and the RO-based RNG structures on FPGA. The chaotic oscillator structure as the basic entropy source has been implemented in VHDL using Euler numerical algorithm in 32-bit IQ-Math fixed point number standart on FPGA. The designed chaotic oscillator has been synthesized for the FPGA chip and the statistics related to chip resource consumption and clock frequencies of the units have been presented. The RO-based RNG structure has been designed as the second entropy source. Chaos-ring based dual entropy core novel TRNG unit have been created by combining of these two FPGA-based structures in the XOR function used at the post processing unit. The throughput of the designed dual entropy core TRNG unit ranges 464 Mbps. The output bit streams obtained from FPGA-based novel TRNG have been subjected to NIST 800-22 test suites.Öğe Edge Detection Method Driven by Knowledge-Based Neighborhood Rules(Taiwan Assoc Engineering & Technology Innovation, 2023) Capkan, Yavuz; Altun, Halis; Fidan, Can BulentEdge detection is a fundamental process, and therefore there are still demands to improve its efficiency and computational complexity. This study proposes a knowledge-based edge detection method to meet this requirement by introducing a set of knowledge-based rules. The methodology to derive the rules is based on the observed continuity properties and the neighborhood characteristics of the edge pixels, which are expressed as simple arithmetical operations to improve computational complexity. The results show that the method has an advantage over the gradient-based methods in terms of performance and computational load. It is appropriately four times faster than Canny method and shows superior performance compared to the gradient-based methods in general. Furthermore, the proposed method provides robustness to effectively identify edges at the corners. Due to its light computational requirement and inherent parallelization properties, the method would be also suitable for hardware implementation on field-programmable gate arrays (FPGA).Öğe Effective and Reliable Speed Control of Permanent Magnet DC (PMDC) Motor under Variable Loads(Springer Singapore Pte Ltd, 2015) Tuna, Murat; Fidan, Can Bulent; Kocabey, Sureyya; Gorgulu, SertacThis paper presents the effective and reliable speed control of PMDC motors under variable loads and reference speeds. As is known DC motors are more preferred in industrial practices. This is that, the PMDC motors don't require brush and commutator care and to increase in torque per motor depending on developments in power electronics. In this study, proportional-integral controller (PI) and fuzzy logic controller (FL) have been designed for speed control of PMDC motor. In the design of these controllers, characteristics such as minimum overrun time, response time to the load, settling time and ideal rise time have been taken into consideration for better stability performance. In this design, the best system response was searched by examining the effect of different defuzzification methods onto the fuzzy logic system response. In conclusion, it has been seen that FL controller has a better performance for variable speed-load control of PMDC motor compared to PI controller.Öğe Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point(Elsevier Gmbh, 2016) Tuna, Murat; Fidan, Can BulentIn this study, numerical, analog and digital circuit modellings were presented with 3 dimensional, continuous, autonomous new chaotic system. Lyapunov exponentials spectrum and bifurcation diagram were presented with timing series of the new chaotic system, phase portraits and Lyapunov exponentials, equilibrium points, dissipativity analyses. Then, analog-based electronic circuit of the new chaotic system is designed in OrCAD-Pspice. It has been observed that it is a very good match on phase portrait results obtained with the numerical analyses, analog circuit simulation Finally, the new chaotic system presented has been numerically realized in two different models by using Heun and RK4 algorithms with discrete time on FPGA, in order to develop embedded chaos-based engineering applications. In creating Heun and RK4-based two different models of the new chaotic system on FPGA, 32 byte IEEE 754-1985 floating point numerical format was used and coded in VHDL format. Designed chaotic systems were synthesized and tested with Xilinx ISE design tool. Chip statistics obtained from the Place&Route operation in Xilinx Virtex-6 family xc6v1x75t-3ff784 FPGA chip of the Heun and RK4-based designed chaotic system were presented. Max operation frequency of the new FPGA-based chaotic signal generator modelled by using two different numerical algorithms is determined as 390.067 MHz. Newly presented chotic system's computer-based numerical simulation was used to realize error analyses fort he design implemented on FPGA. According to the absolute error analysis results, the covergence of 34.456E-5 precision was obtained bwtween the PC-based numerical model and the FPGA-based new chaotic system model. (C) 2016 Elsevier GmbH. All rights reserved.Öğe High speed FPGA-based chaotic oscillator design(Elsevier Science Bv, 2019) Tuna, Murat; Alcin, Murat; Koyuncu, Ismail; Fidan, Can Bulent; Pehlivan, IhsanIn this study, autonomous Lu-Chen (2002) chaotic system has been implemented on FPGA using Heun numerical algorithm in VHDL 32-bit IQ-Math fixed-point number format for developing embedded chaos-based engineering applications. The core units like multiplier, adder and subtractor units, which are compatible with fixed-point number standart used in FPGA-based design, have been created by IP CORE Generator that developed for Xilinx. The designed system has been simulated and synthesized for the Virtex-6 FPGA chip. The chip statistics obtained from Place&Route processing of FPGA-based system and the phase portraits of the results received from the outputs have been presented. The results obtained from FPGA-based Lu-Chen chaotic oscillator have been compared with the computer-based results and the accuracy of the digital circuit-based design has been certified with the successful results. The maximum operating frequency of designed FPGA-based Lu-Chen chaotic oscillator is 464.688 MHz. The performed FPGA-based Lu-Chen chaotic oscillator presents the highest operating frequency among the others in the literature. Besides, the design provides better results than the other 3D FPGA-based chaotic oscillator structures with respect to FPGA resource utilization. In addition, MSE and RMSE accuracy analyzes were performed on the designed chaotic oscillator. The design provides the highest operating frequency among the others in the literature. In addition, it presents better results than the alternatives with respect to FPGA resource utilization. For this reason, this study demonstrates that hardware-based design of Lu-Chen chaotic system can be used in various chaos-based embedded system applications including cryptography, secure communication and random number generation. (C) 2019 Elsevier B.V. All rights reserved.Öğe Implementation of a Steady State Visual Evoked Potantial Based Brain Computer Interface(Ieee, 2016) Sozer, Abdullah Talha; Fidan, Can BulentIn this study, steady-state visual evoked potential based brain computer interface design and implementation was being carried out. A portable and affordable EEG device was used to obtain brain signals. Computer monitor were preferred as visual stimuli source. In offline and online experiment, for detection of target visual stimulus selected by user, the amplitude of the EEG signal components, which correspond visual stimulus frequencies, and correlation coefficient features were tested. In the classification stage the performance of different classification methods were compared and presented along tables.Öğe Novel spatial filter for SSVEP-based BCI: A generated reference filter approach(Pergamon-Elsevier Science Ltd, 2018) Sozer, Abdullah Talha; Fidan, Can BulentSteady state visual evoked potential (SSVEP)-based brain computer interface (BCI) systems can be realised using only one electrode; however, due to the inter-user and inter-trial differences, the handling of multiple electrode is preferred. This raises the problem of evaluating information from multiple electrode signals. To solve this problem, we developed a novel spatial filtering method (Generated Reference Filter) for SSVEP-based BCIs. In our method an artificial reference signal is generated by a combination of reference electrode signals. Multiple regression analysis (MRA) was used to determine the optimal weight coefficients for signal combination. The filtered signal was obtained by subtraction. The method was tested on a SSVEP dataset and compared with minimum energy combination and common reference methods, namely the surface Laplacian technique and common average referencing. The newly developed method provided more effective filtering and therefore higher SSVEP detection accuracy was obtained. It was also more robust against subject-to-subject and trial-to-trial variability as the artificial reference signal was recalculated for each detection round. No special preparation is required, and the method is easy to implement. These experimental results indicate that the proposed method can be used confidently with SSVEP-based BCI systems.Öğe Real Time Hardware Implementation of the 3D Chaotic Oscillator which having Golden-Section Equilibra(Ieee, 2016) Tuna, Murat; Fidan, Can Bulent; Koyuncu, Ismail; Pehlivan, IhsanIn this study, the continuous-time, autonomous, 3D chaotic system having golden-section equilibra which is recently presented in the literature is implemented firstly as discrete time on an FPGA. In this design, the 3D chaotic system was programmed in 32-bit IQ-Math (16I-16Q) fixed-point number format using VHDL and Heun algorithm. The designed system has been synthesized and tested, using Xilinx ISE design tool, on Virtex-6 FPGA chip. According to the test results, operation frequency of the FPGA-based new chaotic signal generator is certain as 406.736MHz. In addition, chip statistics and performance results of the new chaotic oscillator are presented after the Route&Place processes performed on Xilinx ISE design tool. The chaotic oscillator design realized with fixed-point number format on FPGA has been shown to be use lesser chip hardware and higher operating frequency compared to the floating-point standard.Öğe Real Time Implementation of A Novel Chaotic Generator on FPGA(Ieee, 2015) Tuna, Murat; Koyuncu, Ismail; Fidan, Can Bulent; Pehlivan, IhsanIn this study, a new continuous-time autonomous chaotic system has been presented and implemented on FPGA. Presented a new chaotic system has been designed using the IEEE 754-1985 floating-point format and implemented using Heun algorithm with VHDL language. The designed system has been synthesized and tested on Xilinx Virtex-6 FPGA chip. According to the test results, operation frequency of the FPGA-based a new chaotic signal generator is certain as 390 MHz and performance results have been given with chip statistics. In addition, the results obtained from FPGA-based new chaotic generator have been compared with the Matlab-based numerical results and it has been observed that obtained results are successful. By the developed FPGA-based novel chaotic system model, chaos-based various engineering applications such as true random number generation and secure communication system can be performed.Öğe A Study on the importance of chaotic oscillators based on FPGA for true random number generating (TRNG) and chaotic systems(Gazi Univ, Fac Engineering Architecture, 2018) Tuna, Murat; Fidan, Can BulentThe random number generators are used in many areas such as cryptography, the applications where the Monte-Carlo method is used, the application of numerical analysis with computer simulations and modeling. TRNGs that is used in the field of cryptography and secure communications require fast, secure and intensive process of the physical methods that do not have deterministic character are used as entropy source. These methods are direct reinforcement, dual oscillator and chaos-based applications. In recent years the great efforts are being made in the area of developing the chaos-based TRNG structures due to noise-like features and the ability of hiding informatory sign of chaotic oscillators. Chaos based TRNG's within the digital circuits are an effective alternative to the traditional chaos-based analog structure. Because TRNG systems that use analog chaotic signal generator are difficult to be synchronized with the transmitter and receiver. In addition, the weak resources that generates physical noises like thermal or scattering are used on the implementation of these circuits. The digital-based FPGA chips have a significant potential in improving the information security capabilities in some applications as cryptology and securing the communication which requires high performance and processor power. In this study, performance differences between conventional method of TRNG that used chaotic system and recently designed FPGA based chaotic systems have been compered.