Yazar "Nieslony, P." seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Comparison of Tool Wear, Surface Morphology, Specific Cutting Energy and Cutting Temperature in Machining of Titanium Alloys Under Hybrid and Green Cooling Strategies(Korean Soc Precision Eng, 2023) Gupta, Munish Kumar; Nieslony, P.; Korkmaz, Mehmet Erdi; Kuntoglu, Mustafa; Krolczyk, G. M.; Guenay, Mustafa; Sarikaya, MuratCutting energy must be reduced in order to make machining processes more eco-friendly. More energy was expended for the same amount of material removed, hence a higher specific cutting energy (SCE) implies inefficient material removal. Usually, the type of coolants or lubricants affects the SCE, or the amount of energy needed to cut a given volume of material. Therefore, the present work deals with a study of SCE in the turning of Ti-3Al-2.5V alloy under green cooling strategies. In spite of this, the research effort is also focused on the mechanism of tool wear, surface roughness, and cutting temperature under hybrid cooling, i.e., minimum quantity lubrication (MQL) and cryogenic. The tool wear rate, were explored with tool mapping analysis, and the results were compared with dry, MQL, and liquid nitrogen (LN2) conditions. The tool wear rate analysis claims that the dry condition causes more built up edge (BUE) formation. In addition, the hybrid cooling conditions are helpful in reducing the SCE while machining titanium alloys.Öğe Potential use of cryogenic cooling for improving the tribological and tool wear characteristics while machining aluminum alloys(Elsevier Sci Ltd, 2023) Gupta, M. K.; Nieslony, P.; Korkmaz, M. E.; Krolczyk, G. M.; Kuntoglu, M.; Pawlus, P.; Jamil, M.Understanding the process of tool wear in the initial and steady wear stages is crucial for ensuring the dimen-sional accuracy and surface quality of the workpiece, especially during the finishing step. In order to improve the tribological and tool life behaviors when machining the AA2024-T351 alloy, the current paper focuses on the potential use of cryogenic cooling conditions. Here, the experiments were performed under dry, minimal quantity lubrication (MQL), liquid nitrogen (LN2), carbon dioxide (CO2), conditions. The critical tool wear factors in terms of geometrical aspects and physical phenomena were investigated under sustainable cooling environments. The results prove that cryogenic cooling is helpful in improving tool life with good tribological characteristics.Öğe Studies on Geometrical Features of Tool Wear and Other Important Machining Characteristics in Sustainable Turning of Aluminium Alloys(Korean Soc Precision Eng, 2023) Gupta, Munish Kumar; Nieslony, P.; Sarikaya, Murat; Korkmaz, Mehmet Erdi; Kuntoglu, Mustafa; Krolczyk, G. M.The aerospace and automotive industries make extensive use of aluminium and its alloys. Contrarily, machining of aluminium (Al) alloys presents a number of difficulties, including, but not limited to, poor surface finishing, excessive tool wear, decreased productivity etc. Therefore, it's very important to measure the machining characteristics during machining of aluminium alloy with sustainable cooling strategies. In this work, a new approach of measurement was adopted to measure the critical geometrical aspects of tool wear, surface roughness, power consumption and microhardness while machining AA2024-T351 alloy under dry, minimum quantity lubrication (MQL), liquid nitrogen (LN2) and carbon dioxide (CO2) cooling conditions. Initially, the various aspects of tool wear were studied with the help of Sensofar Confocal Microscope integrated with Mountains map software and then, the other results such as surface roughness, power consumption and microhardness were measured as per the ISO standards. The outcome of these measurement studies confirms that LN2 and CO2 cooling is helpful in improving the machining characteristics of AA2024-T351 alloy. When compared to dry conditions, the surface roughness values of MQL, LN2, and CO2 all have values that are lowered by 11.90%, 30.95%, and 39.28% respectively, and also power consumption values were lowered by 3.11%, 6.46% and 11.5% for MQL, CO2 and LN2 conditions, respectively.Öğe Tool wear patterns and their promoting mechanisms in hybrid cooling assisted machining of titanium Ti-3Al-2.5V/grade 9 alloy(Elsevier Sci Ltd, 2022) Gupta, Munish Kumar; Nieslony, P.; Sarikaya, Murat; Korkmaz, Mehmet Erdi; Kuntog, Mustafa; Krolczyk, G. M.; Jamil, MuhammadHybrid lubri-cooling is a latest technology that provides synergistic cooling and lubrication effect in the machining area especially in the cutting of titanium and its alloys. In this current study, cryogenic-LN2, minimum quantity lubrication (MQL), and hybrid cryogenic LN2-MQL are applied and compared against dry medium in perspective of in-depth analysis of tool flank wear, EDS mapping, and intensity of tool wear. Experimental results showed that in comparison with dry, hybrid LN2-MQL substantially reduced the tool flank and rake wear fol-lowed by LN2, MQL, and dry conditions, respectively. Additionally, the SEM and EDS analysis depicted relatively less severe wear and chemical elements adhesion on the tool's main cutting edge, while turning titanium alloy under a hybrid LN2-MQL lubri-cooling environment. In addition, the dry condition has maximum value of tool wear progressions i.e., 1.04 mm and hybrid LN2-MQL have 0.06 mm while machining titanium alloys. When tool wear is evaluated from a tribological point of view, the reduction in flank wear value compared to dry machining is 89.4 %, 92.3 % and 94.2 % owing to MQL, LN2, MQL and hybrid LN2-MQL cutting strategies. In terms of crater wear, the improvement was 87.7 %, 90.4 % and 90.8 % thanks to MQL, LN2, MQL and hybrid LN2-MQL.