Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Ozalp, Nuri" seçeneğine göre listele

Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    BLOW UP AND QUENCHING FOR A PROBLEM WITH NONLINEAR BOUNDARY CONDITIONS
    (Texas State Univ, 2015) Ozalp, Nuri; Selcuk, Burhan
    In this article, we study the blow up behavior of the heat equation u(t) = u(xx) with u(x) (0, t) = u(p) (0,t), u(x) (a,t) = u(q) (a,t). We also study the quenching behavior of the nonlinear parabolic equation v(t) = v(xx) +2v(x)(2) /(1-v) with v(x)(0,t) = (1-v(0, t))(-p+2), v(x)(a,t) = (1-v (a, t)(-q+2). In the blow up problem, if u(0) is a lower solution then we get the blow up occurs in a finite time at the boundary x = a and using positive steady state we give criteria for blow up and non-blow up. In the quenching problem, we show that the only quenching point is x = a and v(t) blows up at the quenching time, under certain conditions and using positive steady state we give criteria for quenching and non-quenching. These analysis is based on the equivalence between the blow up and the quenching for these two equations.
  • Küçük Resim Yok
    Öğe
    The quenching behavior of a nonlinear parabolic equation with a singular boundary condition
    (Hacettepe Univ, Fac Sci, 2015) Ozalp, Nuri; Selcuk, Burhan
    In this paper, we study the quenching behavior of solution of a nonlinear parabolic equation with a singular boundary condition. We prove finite-time quenching for the solution. Further, we show that quenching occurs on the boundary under certain conditions. Furthermore, we show that the time derivative blows up at quenching point. Also, we get a lower solution and an upper bound for quenching time. Finally, we get a quenching rate and lower bounds for quenching time.
  • Küçük Resim Yok
    Öğe
    THE QUENCHING BEHAVIOR OF A SEMILINEAR HEAT EQUATION WITH A SINGULAR BOUNDARY OUTFLUX
    (Brown Univ, 2014) Selcuk, Burhan; Ozalp, Nuri
    In this paper, we study the quenching behavior of the solution of a semilinear heat equation with a singular boundary outflux. We prove a finite-time quenching for the solution. Further, we show that quenching occurs on the boundary under certain conditions and we show that the time derivative blows up at a quenching point. Finally, we get a quenching rate and a lower bound for the quenching time.
  • Küçük Resim Yok
    Öğe
    QUENCHING BEHAVIOR OF SEMILINEAR HEAT EQUATIONS WITH SINGULAR BOUNDARY CONDITIONS
    (Texas State Univ, 2015) Selcuk, Burhan; Ozalp, Nuri
    In this article, we study the quenching behavior of solution to the semilinear heat equation v(t) = v(xx) + f (v), with f(v) = -v(-r) or (1 - v)(-r) and v(x)(0,t) = v(-P)(0,t), v(x)(a,t) = (1-v(a,t))(-q). For this, we utilize the quenching problem u(t) = u(xx) with u(x) (0, t) = u(-P)(0,t), u(x)(a,t) = (1 - u(a,t))(-q). In the second problem, if u(0) is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x = 0 (x = a) and u(t) blows up at quenching time. Further, we obtain a local solution by using positive steady state. In the first problem, we first obtain a local solution by using monotone iterations. Finally, for f(v) = -v(-r) ((1 - v)(-r)), if v(0) is an upper solution (a lower solution) then we show that quenching occurs in a finite time, the only quenching point is x = 0 (x = a) and v(t) blows up at quenching time.

| Karabük Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Kastamonu Yolu Demir Çelik Kampüsü, 78050 - Kılavuzlar, Karabük, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim