BLOW UP AND QUENCHING FOR A PROBLEM WITH NONLINEAR BOUNDARY CONDITIONS

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Texas State Univ

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this article, we study the blow up behavior of the heat equation u(t) = u(xx) with u(x) (0, t) = u(p) (0,t), u(x) (a,t) = u(q) (a,t). We also study the quenching behavior of the nonlinear parabolic equation v(t) = v(xx) +2v(x)(2) /(1-v) with v(x)(0,t) = (1-v(0, t))(-p+2), v(x)(a,t) = (1-v (a, t)(-q+2). In the blow up problem, if u(0) is a lower solution then we get the blow up occurs in a finite time at the boundary x = a and using positive steady state we give criteria for blow up and non-blow up. In the quenching problem, we show that the only quenching point is x = a and v(t) blows up at the quenching time, under certain conditions and using positive steady state we give criteria for quenching and non-quenching. These analysis is based on the equivalence between the blow up and the quenching for these two equations.

Açıklama

Anahtar Kelimeler

Heat equation, nonlinear parabolic equation, blow up, nonlinear boundary condition, quenching, maximum principle

Kaynak

Electronic Journal of Differential Equations

WoS Q Değeri

Q2

Scopus Q Değeri

Cilt

Sayı

Künye