Biyoyağların fenol formaldehit sentezinde kullanımı ve elde edilen tutkalların yapışma direncinin belirlenmesi
Küçük Resim Yok
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Karabük Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, odunsu biyokütlenin vakum pirolizinden elde edilen biyoyağın biyobazlı kimyasal hammadde kaynağı olarak kullanımı araştırılmıştır. Biyoyağın kimyasal içeriği Gaz Kromotografi-Kütle Spektrometre (GC-MS) analizi ile belirlenmiştir. Alkali koşullar altında tutkalların kimyasal sentezinde %10, %20 ve %30 oranlarında biyoyağ, fenole ikame edilmiştir. Biyoyağ-FF tutkalları Termogravimetrik Analiz (TGA), Differansiyel Taramalı Kalorimetre (DSC) ve Fourier Dönüşümlü Infrared Spektroskopisi (FT-IR) analizleri ile termal ve kimyasal olarak karakterize edilmiştir. Sentezlenen tutkallar ile yapıştırılan odun örneklerinin yapışma performansı kuru ve ıslak şartlarda değerlendirilmiştir. Hava Kurusu şartlarında biyoyağ FF tutkalları ile yapıştırılan örneklerin yapışma direnci ticari ve labaratuar FF (Lab. FF) tutkaları ile yapıştırılan örneklerin yapışma direnci benzer bulunmuştur. Islak şartlarda ise FF tutkallarındaki biyoyağ varlığı yapışma direncini olumsuz etkilemiştir. Ancak biyoyağ FF tutkallarının yapışma direnci EN 12765, (2002) standardında belirtilen minimum değerleri karşılamıştır. Biyoyağlar, FF tutkallarının üretiminde fenole kısmen ikame edilebilir.
In this study, bio-oil obtained from vacuum pyrolysis of woody biomass was investigated as a source of bio-based chemicals feedstock. The chemical composition of bio-oil was determinated by Gas Chromatography–Mass Spectrometry (GC/MS). Bio-oil-phenol–formaldehyde adhesives were synthesized using the bio-oil as the replacement of phenol at varying ratios from 10 to 30 wt.% by co-condensation under alkali condition. The bio-oil PF adhesives were characterized by several analysis methods such as Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR). The bonding performance of wood specimens bonded with the bio-oil PF adhesives was evaluated under dry and wet conditions. The shear strength values of the bio-oil PF adhesives were similar to the commercial PF adhesive and the laboratory PF (Lab. PF) adhesive under dry condition. Under wet condition, the shear was negatively affected by presence of the bio-oil. However, the bio-oil PF adhesives met the minimum requirements for durability classes of 1, 2, and 3 specified in EN 12765, (2002). In the production of PF adhesives, bio-oil could be used as partially replace petroleum based phenol.
In this study, bio-oil obtained from vacuum pyrolysis of woody biomass was investigated as a source of bio-based chemicals feedstock. The chemical composition of bio-oil was determinated by Gas Chromatography–Mass Spectrometry (GC/MS). Bio-oil-phenol–formaldehyde adhesives were synthesized using the bio-oil as the replacement of phenol at varying ratios from 10 to 30 wt.% by co-condensation under alkali condition. The bio-oil PF adhesives were characterized by several analysis methods such as Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR). The bonding performance of wood specimens bonded with the bio-oil PF adhesives was evaluated under dry and wet conditions. The shear strength values of the bio-oil PF adhesives were similar to the commercial PF adhesive and the laboratory PF (Lab. PF) adhesive under dry condition. Under wet condition, the shear was negatively affected by presence of the bio-oil. However, the bio-oil PF adhesives met the minimum requirements for durability classes of 1, 2, and 3 specified in EN 12765, (2002). In the production of PF adhesives, bio-oil could be used as partially replace petroleum based phenol.
Açıklama
Fen Bilimleri Enstitüsü, Orman Endüstri Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Ağaç İşleri, Wood Products ; Biyokimya