Key initiatives to improve the machining characteristics of Inconel-718 alloy: Experimental analysis and optimization
Küçük Resim Yok
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Inconel 718 is a heat-resistant Ni-based superalloy widely used, particularly, in aircraft and aero-engineering applications. It has poor machinability due to its unique thermal and mechanical properties. For this reason, studies have been carried out from past to present to improve the machinability of Nickel-based (Ni) alloys. Further improvement can be achieved by applying hybrid multi-objective optimization strategies to ensure that cutting parameters and cooling/lubrication strategies are also adjusted effectively. That is why, in this research, the machinability of Inconel 718 is optimized under various sustainable lubricating environments i.e., dry medium, minimum quantity lubrication (MQL), nano-MQL, and cryogenic conditions at different machining parameters during end-milling process. Subsequently, the analysis of variance (ANOVA) approach was implanted to apprehend the impact of each machining parameter. Finally, to optimize machining en-vironments, two advanced optimization algorithms (non-dominated sorting genetic algo-rithm II (NSGA-II) and the Teaching-learning-based optimization (TLBO) approach) were introduced. As a result, both methods have demonstrated remarkable efficiency in ma-chine response prediction. Both methodologies demonstrate that a cutting speed of 90 m/ min, feed rate of 0.05 mm/rev, and CO2 snow are the optimal circumstances for minimizing machining responses during milling of Inconel 718. (C) 2022 The Author(s). Published by Elsevier B.V.
Açıklama
Anahtar Kelimeler
Inconel 718, Cooling/lubrication strategies, End milling, Advanced optimization approaches, NSGA-II and TLBO
Kaynak
Journal of Materials Research and Technology-Jmr&T
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
21