Predictive modelling and optimization for machinability indicators in cleaner milling of PH13-8Mo using sustainable cutting environments

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Heidelberg

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study aims to optimize and model the resultant cutting force (Fr) and surface roughness (Ra) in the cleaner milling of PH13-8Mo stainless steel, which is extremely difficult to machine due to its high technical properties. The impacts of dry, minimal quantity lubrication (MQL) and cryogenic (Cryo) environments on the Fr and Ra were investigated in the up-milling of PH13-8Mo. The experiments were done using TiAlN-coated inserts at varying cutting speeds and feed rates. Control factors were optimized simultaneously with Taguchi-based grey relational analysis (TGRA) to minimize Fr and Ra. Predictive models of Fr and Ra were developed by the response surface method. An average of 20.98% and 19.86% improvement in Ra was achieved in the MQL and cryo environments, respectively. Increased sticking, chipping and microcracks in the insert due to cryogenic cooling increased Fr and Ra. Optimum factors were found as an MQL environment, a 60 m/min cutting speed and a 0.04 mm/rev feed rate with TGRA. The high correlations of the developed mathematical models showed that the models were reliable. Thus, significant support will be provided to sustainable machining with the industrial use of data obtained for machinability indicators in milling PH13-8Mo steel.

Açıklama

Anahtar Kelimeler

PH13-8Mo, Cleaner machining, MQL, Cryogenic, Optimization, Modelling

Kaynak

Journal of the Brazilian Society of Mechanical Sciences and Engineering

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

46

Sayı

5

Künye