This study aims to optimize the engine parameters using response surface methodology to achieve fewer pollutants in the exhaust of a spark-ignition engine mounted with a commercial catalytic converter and a sucrolite-catalyst coated converter

dc.authoridSeetharaman, Sathyanarayanan/0000-0002-3101-4486
dc.contributor.authorSathyanarayanan, S.
dc.contributor.authorSuresh, S.
dc.contributor.authorUslu, S.
dc.contributor.authorShivaranjani, R. S.
dc.contributor.authorChandramohan, V. P.
dc.contributor.authorSimsek, S.
dc.date.accessioned2024-09-29T15:54:45Z
dc.date.available2024-09-29T15:54:45Z
dc.date.issued2023
dc.departmentKarabük Üniversitesien_US
dc.description.abstractThis study aims to optimize the engine parameters using response surface methodology to achieve fewer pollutants in the exhaust of a spark-ignition engine mounted with a commercial catalytic converter and a modified catalytic converter. In this research, a sucrose-doped alumina was used as a catalyst as a novel technique to reduce the harmful pollutants present in the exhaust gas. The experiment allowed exhaust gas to pass axially through the converters. The experimental parameters employed were used to develop a numerical model to predict emission levels concerning catalytic converters. The numerical model was developed using brake power, actual to the theoretical air-fuel ratio, and engine exhaust gas pollutants measured before being treated by the catalytic converter as input variables, and primary toxic pollutants treated by the catalytic converters output parameters. The developed model showed superior performance, with higher R-2 values over 0.987 for all cases. The experimental results validated the predicted optimum responses, and the measured error percentage was less than 3% for most cases. The optimized parameters yielded a desirability factor of 0.831 for the commercial catalytic converter and 0.9 for the modified catalytic converter. Thus, the developed response surface methodology model can highly predict the emission characteristics. [GRAPHICS] .en_US
dc.identifier.doi10.1007/s13762-022-03968-5
dc.identifier.endpage1738en_US
dc.identifier.issn1735-1472
dc.identifier.issn1735-2630
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85124321962en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage1725en_US
dc.identifier.urihttps://doi.org/10.1007/s13762-022-03968-5
dc.identifier.urihttps://hdl.handle.net/20.500.14619/4263
dc.identifier.volume20en_US
dc.identifier.wosWOS:000751600100002en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofInternational Journal of Environmental Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGasoline engineen_US
dc.subjectNumerical modelen_US
dc.subjectEmission reductionen_US
dc.subjectEmission predictionen_US
dc.subjectLow light-off temperatureen_US
dc.subjectExhaust gas treatmenten_US
dc.subjectPerformance testen_US
dc.titleThis study aims to optimize the engine parameters using response surface methodology to achieve fewer pollutants in the exhaust of a spark-ignition engine mounted with a commercial catalytic converter and a sucrolite-catalyst coated converteren_US
dc.typeArticleen_US

Dosyalar