A novel method based on deep learning algorithms for material deformation rate detection

Küçük Resim Yok

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Given the significant influence of microstructural characteristics on a material's mechanical, physical, and chemical properties, this study posits that the deformation rate of structural steel S235-JR can be precisely determined by analyzing changes in its microstructure. Utilizing advanced artificial intelligence techniques, microstructure images of S235-JR were systematically analyzed to establish a correlation with the material's lifespan. The steel was categorized into five classes and subjected to varying deformation rates through laboratory tensile tests. Post-deformation, the specimens underwent metallographic procedures to obtain microstructure images via an light optical microscope (LOM). A dataset comprising 10000 images was introduced and validated using K-Fold cross-validation. This research utilized deep learning (DL) architectures ResNet50, ResNet101, ResNet152, VGG16, and VGG19 through transfer learning to train and classify images containing deformation information. The effectiveness of these models was meticulously compared using a suite of metrics including Accuracy, F1-score, Recall, and Precision to determine their classification success. The classification accuracy was compared across the test data, with ResNet50 achieving the highest accuracy of 98.45%. This study contributes a five-class dataset of labeled images to the literature, offering a new resource for future research in material science and engineering.

Açıklama

Anahtar Kelimeler

Deep learning, Transfer learning, S235-JR structural steel, Deformation rate, Material life analysis

Kaynak

Journal of Intelligent Manufacturing

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

Sayı

Künye