Automatic identification for field butterflies by convolutional neural networks

Küçük Resim Yok

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier - Division Reed Elsevier India Pvt Ltd

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In today's competitive conditions, producing fast, inexpensive and reliable solutions are an objective for engineers. Development of artificial intelligence and the introduction of this technology to almost all areas have created a need to minimize the human factor by using artificial intelligence in the field of image processing, as well as to make a profit in terms of time and labor. In this paper, we propose an automated butterfly species identification model using deep neural networks. We collected 44,659 images of 104 different butterfly species taken with different positions of butterflies, the shooting angle, butterfly distance, occlusion and background complexity in the field in Turkey. Since many species have a few image samples we constructed a field-based dataset of 17,769 butterflies with 10 species. Convolutional Neural Networks (CNNs) were used for the identification of butterfly species. Comparison and evaluation of the experimental results obtained using three different network structures are conducted. Experimental results on 10 common butterfly species showed that our method successfully identified various butterfly species. (C) 2020 Karabuk University. Publishing services by Elsevier B.V.

Açıklama

Anahtar Kelimeler

Butterfly, Deep learning, Classification, ResNet, Transfer learning

Kaynak

Engineering Science and Technology-An International Journal-Jestech

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

23

Sayı

1

Künye