Theoretical analyses of immiscible MHD pipe flow

Küçük Resim Yok

Tarih

2015

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this study, effect of normally applied magnetic field on immiscible fluid flow hydrodynamic flow characteristic has been analytically investigated. Flow case modelled for two different flow patterns. The first one is low electrically conductive fluid (gasoline) inner core and higher one (salty water) outer flow regional pattern and the second one is high electrically conductive fluid inner core and lower one is outer regional flow case in a vertical circular pipe. Flow models have been modelled in differential form theoretical equations and solved with Laplace Transform method. Solved equation systems presented the dependent statement of the local flow velocity and flow rates to the magnetic field induction, pipe radius and pressure gradient. It is estimated that high electrically conductive fluid was directly affected by the magnetic forces which is created by the magnetic field, and also low electrically conductive fluid was indirectly affected from the magnetic field because of the interfacial tension between the fluids. As a result, overall velocity of the flow domain was reduced more by the magnetic forces in the event of low conductive fluid inner core and high conductive fluid outer regional flow case. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Açıklama

4th International Conference on Nuclear and Renewable Energy Resources (NURER) -- OCT 26-29, 2014 -- Antalya, TURKEY

Anahtar Kelimeler

Magnetic field, Immiscible flow, Laplace transform

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

40

Sayı

44

Künye